metadata
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- portuguese
- brasil
- gemma
- portugues
- instrucao
datasets:
- rhaymison/superset
pipeline_tag: text-generation
widget:
- text: Me explique como funciona um computador.
example_title: Computador.
- text: Me conte sobre a ida do homem a Lua.
example_title: Homem na Lua.
- text: Fale sobre uma curiosidade sobre a história do mundo
example_title: História.
- text: Escreva um poema bem interessante sobre o Sol e as flores.
example_title: Escreva um poema.
model-index:
- name: gemma-portuguese-luana-2b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 24.42
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 24.34
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 27.11
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 70.86
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 1.51
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.97
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 40.05
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 51.83
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 30.42
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
name: Open Portuguese LLM Leaderboard
QuantFactory/gemma-portuguese-luana-2b-GGUF
This is quantized version of rhaymison/gemma-portuguese-luana-2b created using llama.cpp
Original Model Card
gemma-portuguese-2b-luana
Model description
updated: 2024-04-10 20:06
The gemma-portuguese-2b model is a portuguese model trained with the superset dataset with 250,000 instructions. The model is mainly focused on text generation and instruction. The model was not trained on math and code tasks. The model is generalist with focus on understand portuguese inferences. With this fine tuning for portuguese, you can adjust the model for a specific field.
How to Use
from transformers import AutoTokenizer, pipeline
import torch
model = "rhaymison/gemma-portuguese-luana-2b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
messages = [
{
"role": "system",
"content": "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
},
{"role": "user", "content": "Me conte sobre a ida do homem a Lua."},
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(
prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.2,
top_k=50,
top_p=0.95
)
print(outputs[0]["generated_text"][len(prompt):].replace("model",""))
#A viagem à Lua foi um esforço monumental realizado pela Agência Espacial dos EUA entre 1969 e 1972.
#Foi um marco significativo na exploração espacial e na ciência humana.
#Aqui está uma visão geral de sua jornada: 1. O primeiro voo espacial humano foi o de Yuri Gagarin, que voou a Terra em 12 de abril de 1961.
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer2 = AutoTokenizer.from_pretrained("rhaymison/gemma-portuguese-luana-2b")
model2 = AutoModelForCausalLM.from_pretrained("rhaymison/gemma-portuguese-luana-2b", device_map={"":0})
tokenizer2.pad_token = tokenizer2.eos_token
tokenizer2.add_eos_token = True
tokenizer2.add_bos_token, tokenizer2.add_eos_token
tokenizer2.padding_side = "right"
text = f"""<start_of_turn>user
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
###instrução:Me conte sobre a ida do homem a Lua.<end_of_turn>
<start_of_turn>model """
device = "cuda:0"
inputs = tokenizer2(text, return_tensors="pt").to(device)
outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False)
output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
print(output.replace("model"," "))
#A viagem à Lua foi um esforço monumental realizado pela Agência Espacial dos EUA entre 1969 e 1972.
#Foi um marco significativo na exploração espacial e na ciência humana.
#Aqui está uma visão geral de sua jornada: 1. O primeiro voo espacial humano foi o de Yuri Gagarin, que voou a Terra em 12 de abril de 1961.
text = f"""<start_of_turn>user
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
###instrução:Me explique como funciona um computador.<end_of_turn>
<start_of_turn>model """
device = "cuda:0"
inputs = tokenizer2(text, return_tensors="pt").to(device)
outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False)
output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
print(output.replace("model"," "))
#Um computador é um dispositivo eletrônico que pode executar tarefas que um humano pode fazer.
#Ele usa um conjunto de circuitos elétricos, componentes eletrônicos e software para processar informações e executar tarefas.
#Os componentes de um computador incluem um processador, memória, unidade de armazenamento, unidade de processamento gráfica,
#unidade de controle, unidade de entrada e saída,e dispositivos de entrada e saída.
#O processador é o coração do computador e executa instruções de software.A memória é onde o computador armazena
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 34.94 |
ENEM Challenge (No Images) | 24.42 |
BLUEX (No Images) | 24.34 |
OAB Exams | 27.11 |
Assin2 RTE | 70.86 |
Assin2 STS | 1.51 |
FaQuAD NLI | 43.97 |
HateBR Binary | 40.05 |
PT Hate Speech Binary | 51.83 |
tweetSentBR | 30.42 |
Comments
Any idea, help or report will always be welcome.
email: [email protected]