NeuralDaredevil-7B-GGUF

Model Description

NeuralDaredevil-7B is a DPO fine-tune of mlabonne/Daredevil-7B using the argilla/distilabel-intel-orca-dpo-pairs preference dataset and my DPO notebook from this article.

Thanks Argilla for providing the dataset and the training recipe here. πŸ’ͺ

πŸ† Evaluation

Nous

The evaluation was performed using LLM AutoEval on Nous suite.

Model Average AGIEval GPT4All TruthfulQA Bigbench
mlabonne/NeuralDaredevil-7B πŸ“„ 59.39 45.23 76.2 67.61 48.52
mlabonne/Beagle14-7B πŸ“„ 59.4 44.38 76.53 69.44 47.25
argilla/distilabeled-Marcoro14-7B-slerp πŸ“„ 58.93 45.38 76.48 65.68 48.18
mlabonne/NeuralMarcoro14-7B πŸ“„ 58.4 44.59 76.17 65.94 46.9
openchat/openchat-3.5-0106 πŸ“„ 53.71 44.17 73.72 52.53 44.4
teknium/OpenHermes-2.5-Mistral-7B πŸ“„ 52.42 42.75 72.99 52.99 40.94

You can find the complete benchmark on YALL - Yet Another LLM Leaderboard.

Open LLM Leaderboard

Detailed results can be found here

Metric Value
Avg. 74.12
AI2 Reasoning Challenge (25-Shot) 69.88
HellaSwag (10-Shot) 87.62
MMLU (5-Shot) 65.12
TruthfulQA (0-shot) 66.85
Winogrande (5-shot) 82.08
GSM8k (5-shot) 73.16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/NeuralDaredevil-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Built with Distilabel

Downloads last month
46
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for QuantFactory/NeuralDaredevil-7B-GGUF

Quantized
(4)
this model

Evaluation results