QuantFactory/L3.1-Purosani-2-8B-GGUF
This is quantized version of djuna/L3.1-Purosani-2-8B created using llama.cpp
Original Model Card
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the della_linear merge method using unsloth/Meta-Llama-3.1-8B as a base.
Models Merged
The following models were included in the merge:
- hf-100/Llama-3-Spellbound-Instruct-8B-0.3
- arcee-ai/Llama-3.1-SuperNova-Lite + grimjim/Llama-3-Instruct-abliteration-LoRA-8B
- THUDM/LongWriter-llama3.1-8b + ResplendentAI/Smarts_Llama3
- djuna/L3.1-Suze-Vume-2-calc
- djuna/L3.1-ForStHS + Blackroot/Llama-3-8B-Abomination-LORA
Configuration
The following YAML configuration was used to produce this model:
merge_method: della_linear
dtype: bfloat16
parameters:
epsilon: 0.1
lambda: 1.0
int8_mask: true
normalize: true
base_model: unsloth/Meta-Llama-3.1-8B
models:
- model: arcee-ai/Llama-3.1-SuperNova-Lite+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
parameters:
weight: 1
density: 0.5
- model: hf-100/Llama-3-Spellbound-Instruct-8B-0.3
parameters:
weight: 1
density: 0.45
- model: djuna/L3.1-Suze-Vume-2-calc
parameters:
weight: 1
density: 0.45
- model: THUDM/LongWriter-llama3.1-8b+ResplendentAI/Smarts_Llama3
parameters:
weight: 1
density: 0.55
- model: djuna/L3.1-ForStHS+Blackroot/Llama-3-8B-Abomination-LORA
parameters:
weight: 1
density: 0.5
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 22.85 |
IFEval (0-Shot) | 49.88 |
BBH (3-Shot) | 31.39 |
MATH Lvl 5 (4-Shot) | 10.12 |
GPQA (0-shot) | 6.82 |
MuSR (0-shot) | 8.30 |
MMLU-PRO (5-shot) | 30.57 |
- Downloads last month
- 371
Model tree for QuantFactory/L3.1-Purosani-2-8B-GGUF
Merge model
this model
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard49.880
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard31.390
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard10.120
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.820
- acc_norm on MuSR (0-shot)Open LLM Leaderboard8.300
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard30.570