dataset-5400

This model is a fine-tuned version of facebook/mbart-large-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6678
  • Gen Len: 16.2956
  • Rouge-1: 61.8854
  • Rouge-2: 51.9874
  • Rouge-l: 61.5994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Gen Len Rouge-1 Rouge-2 Rouge-l
No log 1.0 642 3.1256 18.2467 34.4667 18.0906 33.8972
No log 2.0 1284 3.0535 19.7 35.0866 18.7498 34.6592
No log 3.0 1926 2.9782 18.5556 36.3096 19.6731 35.8024
No log 4.0 2568 2.9259 15.9622 37.2212 19.9257 36.5795
No log 5.0 3210 2.8784 18.0756 39.3406 21.8734 38.7753
No log 6.0 3852 2.8503 17.6089 38.3231 21.1923 37.7442
No log 7.0 4494 2.8441 17.0822 39.6139 23.1286 39.0491
3.1832 8.0 5136 2.7900 17.0111 42.3608 24.9947 41.8427
3.1832 9.0 5778 2.7731 16.1467 41.4778 24.2298 41.044
3.1832 10.0 6420 2.7838 17.5978 42.3125 25.3928 41.6762
3.1832 11.0 7062 2.7627 15.3511 42.4708 25.7843 42.0607
3.1832 12.0 7704 2.7382 16.6333 45.7431 28.9995 45.1587
3.1832 13.0 8346 2.7240 16.8978 44.2626 28.2948 43.6046
3.1832 14.0 8988 2.7129 16.4311 47.5648 32.3034 47.1341
3.1832 15.0 9630 2.6917 16.54 47.0207 31.3636 46.4102
2.4158 16.0 10272 2.7043 16.2956 47.5201 31.9858 47.1196
2.4158 17.0 10914 2.6951 16.1467 48.0773 32.6974 47.7123
2.4158 18.0 11556 2.7118 16.18 49.4704 34.8365 49.2157
2.4158 19.0 12198 2.6950 16.7111 50.4711 36.0529 50.0663
2.4158 20.0 12840 2.6708 16.7133 51.5121 36.6734 51.2274
2.4158 21.0 13482 2.6730 16.1444 50.5072 35.9911 49.9929
2.4158 22.0 14124 2.6710 15.9867 50.9642 36.5418 50.5949
2.4158 23.0 14766 2.6748 15.9156 52.8178 39.0075 52.5719
2.1866 24.0 15408 2.6639 15.5133 52.3247 37.9551 51.9185
2.1866 25.0 16050 2.6949 16.4578 53.5261 40.8743 53.3567
2.1866 26.0 16692 2.6709 16.9267 54.6274 42.0288 54.2419
2.1866 27.0 17334 2.6668 15.5622 53.2566 40.0637 53.136
2.1866 28.0 17976 2.6578 16.2756 57.4156 44.4816 57.045
2.1866 29.0 18618 2.6522 15.5689 54.1314 41.6894 54.0261
2.1866 30.0 19260 2.6645 16.1222 56.879 44.8673 56.6811
2.1866 31.0 19902 2.6625 16.6333 58.1119 46.0585 57.8146
2.0501 32.0 20544 2.6512 15.8844 57.1061 45.1091 56.9354
2.0501 33.0 21186 2.6499 16.2022 58.2516 47.2457 57.8831
2.0501 34.0 21828 2.6727 16.1467 57.596 46.2813 57.3532
2.0501 35.0 22470 2.6673 16.1 58.9716 48.0406 58.6796
2.0501 36.0 23112 2.6556 16.6867 59.6493 48.5384 59.347
2.0501 37.0 23754 2.6523 16.3778 59.1905 48.2495 58.7407
2.0501 38.0 24396 2.6416 16.8333 60.8048 50.8419 60.5507
1.9593 39.0 25038 2.6553 16.2311 59.0907 48.4354 58.9027
1.9593 40.0 25680 2.6510 16.0222 60.5903 49.821 60.3967
1.9593 41.0 26322 2.6703 16.0044 59.9114 49.1521 59.7299
1.9593 42.0 26964 2.6593 16.1356 60.7095 50.1594 60.4683
1.9593 43.0 27606 2.6678 16.2956 61.8854 51.9874 61.5994

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Pubudu/dataset-5400

Finetuned
(134)
this model