Upload folder using huggingface_hub

#1
by sharpenb - opened
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ metrics:
4
+ - memory_disk
5
+ - memory_inference
6
+ - inference_latency
7
+ - inference_throughput
8
+ - inference_CO2_emissions
9
+ - inference_energy_consumption
10
+ tags:
11
+ - pruna-ai
12
+ ---
13
+ <!-- header start -->
14
+ <!-- 200823 -->
15
+ <div style="width: auto; margin-left: auto; margin-right: auto">
16
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
17
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
18
+ </a>
19
+ </div>
20
+ <!-- header end -->
21
+
22
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
23
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
24
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
25
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
26
+
27
+ # Simply make AI models cheaper, smaller, faster, and greener!
28
+
29
+ - Give a thumbs up if you like this model!
30
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
31
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
32
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
33
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
34
+
35
+ ## Results
36
+
37
+ ![image info](./plots.png)
38
+
39
+ **Frequently Asked Questions**
40
+ - ***How does the compression work?*** The model is compressed with llm-int8.
41
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
42
+ - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
43
+ - ***What is the model format?*** We use safetensors.
44
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
45
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
46
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
47
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
48
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
49
+
50
+ ## Setup
51
+
52
+ You can run the smashed model with these steps:
53
+
54
+ 0. Check requirements from the original repo smallcloudai/Refact-1_6B-fim installed. In particular, check python, cuda, and transformers versions.
55
+ 1. Make sure that you have installed quantization related packages.
56
+ ```bash
57
+ pip install transformers accelerate bitsandbytes>0.37.0
58
+ ```
59
+ 2. Load & run the model.
60
+ ```python
61
+ from transformers import AutoModelForCausalLM, AutoTokenizer
62
+
63
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/smallcloudai-Refact-1_6B-fim-bnb-8bit-smashed",
64
+ trust_remote_code=True)
65
+ tokenizer = AutoTokenizer.from_pretrained("smallcloudai/Refact-1_6B-fim")
66
+
67
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
68
+
69
+ outputs = model.generate(input_ids, max_new_tokens=216)
70
+ tokenizer.decode(outputs[0])
71
+ ```
72
+
73
+ ## Configurations
74
+
75
+ The configuration info are in `smash_config.json`.
76
+
77
+ ## Credits & License
78
+
79
+ The license of the smashed model follows the license of the original model. Please check the license of the original model smallcloudai/Refact-1_6B-fim before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
80
+
81
+ ## Want to compress other models?
82
+
83
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
84
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/tmp/tmphei5qhy9",
3
+ "architectures": [
4
+ "GPTRefactForCausalLM"
5
+ ],
6
+ "attention_bias_in_fp32": true,
7
+ "attention_softmax_in_fp32": true,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_gpt_refact.GPTRefactConfig",
10
+ "AutoModelForCausalLM": "modeling_gpt_refact.GPTRefactForCausalLM"
11
+ },
12
+ "do_sample": true,
13
+ "eos_token_id": 0,
14
+ "initializer_range": 0.02,
15
+ "layer_norm_epsilon": 1e-05,
16
+ "model_type": "gpt_refact",
17
+ "multi_query": true,
18
+ "n_embd": 2048,
19
+ "n_head": 32,
20
+ "n_inner": null,
21
+ "n_layer": 32,
22
+ "n_positions": 4096,
23
+ "quantization_config": {
24
+ "bnb_4bit_compute_dtype": "bfloat16",
25
+ "bnb_4bit_quant_type": "fp4",
26
+ "bnb_4bit_use_double_quant": true,
27
+ "llm_int8_enable_fp32_cpu_offload": false,
28
+ "llm_int8_has_fp16_weight": false,
29
+ "llm_int8_skip_modules": [
30
+ "lm_head"
31
+ ],
32
+ "llm_int8_threshold": 6.0,
33
+ "load_in_4bit": false,
34
+ "load_in_8bit": true,
35
+ "quant_method": "bitsandbytes"
36
+ },
37
+ "scale_attention_softmax_in_fp32": true,
38
+ "torch_dtype": "float16",
39
+ "transformers_version": "4.37.1",
40
+ "use_cache": true,
41
+ "vocab_size": 49216
42
+ }
configuration_gpt_refact.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+
7
+ class GPTRefactConfig(PretrainedConfig):
8
+ model_type = "gpt_refact"
9
+ keys_to_ignore_at_inference = ["past_key_values"]
10
+ attribute_map = {
11
+ "hidden_size": "n_embd",
12
+ "max_position_embeddings": "n_positions",
13
+ "num_attention_heads": "n_head",
14
+ "num_hidden_layers": "n_layer",
15
+ }
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_size: int = 49216,
20
+ n_positions: int = 4096,
21
+ n_embd: int = 1024,
22
+ n_layer: int = 32,
23
+ n_head: int = 64,
24
+ max_position_embeddings: int = 4096,
25
+ multi_query: bool = True,
26
+ layer_norm_epsilon: float = 1e-5,
27
+ initializer_range: float = 0.02,
28
+ use_cache: bool = True,
29
+ eos_token_id: int = 0,
30
+ attention_softmax_in_fp32: bool = True,
31
+ scale_attention_softmax_in_fp32: bool = True,
32
+ attention_bias_in_fp32: bool = True,
33
+ torch_dtype: str = 'bfloat16',
34
+ **kwargs,
35
+ ):
36
+ self.vocab_size = vocab_size
37
+ self.n_positions = n_positions
38
+ self.n_embd = n_embd
39
+ self.n_layer = n_layer
40
+ self.n_head = n_head
41
+ self.n_inner = None
42
+ self.layer_norm_epsilon = layer_norm_epsilon
43
+ self.initializer_range = initializer_range
44
+ self.use_cache = use_cache
45
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
46
+ self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
47
+ self.attention_bias_in_fp32 = attention_bias_in_fp32
48
+ self.multi_query = multi_query
49
+ self.max_position_embeddings = max_position_embeddings
50
+ self.torch_dtype = torch_dtype
51
+ super().__init__(eos_token_id=eos_token_id, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "do_sample": true,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.37.1"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:607541c1f1a222648dcf86c104f7c7e49d0e61eb17c54e4e82cfbd3cd5d2c2c2
3
+ size 1789848296
modeling_gpt_refact.py ADDED
@@ -0,0 +1,602 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import torch.utils.checkpoint
5
+ from torch import nn
6
+ from torch.nn import CrossEntropyLoss
7
+ from transformers.modeling_outputs import (
8
+ BaseModelOutputWithPastAndCrossAttentions,
9
+ CausalLMOutputWithCrossAttentions,
10
+ )
11
+ from transformers.modeling_utils import PreTrainedModel
12
+ from transformers.utils import (
13
+ logging,
14
+ )
15
+ from typing import List, Optional, Tuple, Union
16
+
17
+ from .configuration_gpt_refact import GPTRefactConfig
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+
22
+ @torch.jit.script
23
+ def upcast_masked_softmax(
24
+ x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, softmax_dtype: torch.dtype
25
+ ):
26
+ input_dtype = x.dtype
27
+ x = x.to(softmax_dtype)
28
+ x = torch.where(mask, x, mask_value)
29
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
30
+ return x
31
+
32
+
33
+ @torch.jit.script
34
+ def upcast_softmax(x: torch.Tensor, softmax_dtype: torch.dtype):
35
+ input_dtype = x.dtype
36
+ x = x.to(softmax_dtype)
37
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
38
+ return x
39
+
40
+
41
+ @torch.jit.script
42
+ def _get_slopes(attn_heads: int, dev: torch.device) -> torch.Tensor:
43
+ """
44
+ ## Get head-specific slope $m$ for each head
45
+ * `n_heads` is the number of heads in the attention layer $n$
46
+ The slope for first head is
47
+ $$\frac{1}{2^{\frac{8}{n}}} = 2^{-\frac{8}{n}}$$
48
+ The slopes for the rest of the heads are in a geometric series with a ratio same as above.
49
+ For instance when the number of heads is $8$ the slopes are
50
+ $$\frac{1}{2^1}, \frac{1}{2^2}, \dots, \frac{1}{2^8}$$
51
+ """
52
+
53
+ # Get the closest power of 2 to `n_heads`.
54
+ # If `n_heads` is not a power of 2, then we first calculate slopes to the closest (smaller) power of 2,
55
+ # and then add the remaining slopes.
56
+ n = 2 ** math.floor(math.log(attn_heads, 2))
57
+ # $2^{-\frac{8}{n}}$
58
+ m_0 = 2.0 ** (-8.0 / n)
59
+ # $2^{-1\frac{8}{n}}, 2^{-2 \frac{8}{n}}, 2^{-3 \frac{8}{n}}, \dots$
60
+ m = torch.pow(m_0, torch.arange(1, 1 + n, device=dev))
61
+
62
+ # If `n_heads` is not a power of 2, then we add the remaining slopes.
63
+ # We calculate the remaining slopes for $n * 2$ (avoiding slopes added previously).
64
+ # And pick the slopes upto `n_heads`.
65
+ if n < attn_heads:
66
+ # $2^{-\frac{8}{2n}}$
67
+ m_hat_0 = 2.0 ** (-4.0 / n)
68
+ # $2^{-1\frac{8}{2n}}, 2^{-3 \frac{8}{2n}}, 2^{-5 \frac{8}{2n}}, \dots$
69
+ # Note that we take steps by $2$ to avoid slopes added previously.
70
+ m_hat = torch.pow(m_hat_0, torch.arange(1, 1 + 2 * (attn_heads - n), 2, device=dev))
71
+ # Concatenate the slopes with the remaining slopes.
72
+ m = torch.cat([m, m_hat])
73
+ return m
74
+
75
+ @torch.jit.script
76
+ def get_alibi_biases(
77
+ B: int,
78
+ T: int,
79
+ attn_heads: int,
80
+ dev: torch.device,
81
+ dtype: torch.dtype) -> torch.Tensor:
82
+ """
83
+ ## Calculate the attention biases matrix
84
+ * `n_heads` is the number of heads in the attention layer
85
+ * `mask` is the attention mask of shape `[seq_len_q, seq_len_k]`
86
+ This returns a matrix of shape `[seq_len_q, seq_len_k, n_heads, ]` with ALiBi attention biases.
87
+ """
88
+
89
+ # Get slopes $m$ for each head
90
+ mask = torch.ones((T, T), device=dev, dtype=torch.bool)
91
+
92
+ m = _get_slopes(attn_heads, dev).to(dtype)
93
+
94
+ # Calculate distances $[0, 1, \dots, N]$
95
+ # Here we calculate the distances using the mask.
96
+ #
97
+ # Since it's causal mask we can just use $[0, 1, \dots, N]$ too.
98
+ # `distance = torch.arange(mask.shape[1], dtype=torch.long, device=mask.device)[None, :]`
99
+ distance = mask.cumsum(dim=-1).to(dtype)
100
+
101
+ # Multiply them pair-wise to get the AliBi bias matrix
102
+ biases = distance[:, :, None] * m[None, None, :]
103
+ biases = biases.permute(2, 0, 1)[None, :, :T, :T]
104
+ return biases.contiguous()
105
+
106
+
107
+ class Attention(nn.Module):
108
+
109
+ def __init__(self, config, layer_idx=None):
110
+ super().__init__()
111
+ self.mask_value = None
112
+
113
+ self.embed_dim = config.hidden_size
114
+ self.num_heads = config.num_attention_heads
115
+ self.head_dim = self.embed_dim // self.num_heads
116
+ self.kv_attn_heads = 1
117
+
118
+ self.scale_factor = self.head_dim ** -0.5
119
+
120
+ if self.head_dim * self.num_heads != self.embed_dim:
121
+ raise ValueError(
122
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
123
+ f" {self.num_heads})."
124
+ )
125
+
126
+ self.layer_idx = layer_idx
127
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
128
+ self.scale_attention_softmax_in_fp32 = (
129
+ config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
130
+ )
131
+ self.attention_bias_in_fp32 = config.attention_bias_in_fp32
132
+
133
+ self.q = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
134
+ self.kv = nn.Linear(self.embed_dim, self.head_dim * 2, bias=False)
135
+ self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
136
+
137
+ def _get_mask_value(self, device, dtype):
138
+ # torch.where expects a tensor. We use a cache to avoid recreating it every time.
139
+ if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
140
+ self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
141
+ return self.mask_value
142
+
143
+ def _attn(self, query, key, value, attention_mask=None, alibi=None):
144
+ dtype = query.dtype
145
+ softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
146
+ mask_value = self._get_mask_value(query.device, softmax_dtype)
147
+ upcast = dtype != softmax_dtype
148
+
149
+ query_shape = query.shape
150
+ batch_size = query_shape[0]
151
+ key_length = key.size(-1)
152
+
153
+ # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
154
+ # -> (batch_size, query_length, num_heads, key_length)
155
+ query_length = query_shape[1]
156
+ attn_shape = (batch_size, query_length, self.num_heads, key_length)
157
+ attn_view = (batch_size, query_length * self.num_heads, key_length)
158
+ # No copy needed for MQA 2, or when layer_past is provided.
159
+ query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)
160
+
161
+ alibi = alibi.transpose(2, 1).reshape(alibi.shape[0], -1, alibi.shape[-1])
162
+ initial_dtype = query.dtype
163
+ new_dtype = torch.float32 if self.attention_bias_in_fp32 else initial_dtype
164
+ attn_weights = alibi.baddbmm(
165
+ batch1=query.to(new_dtype),
166
+ batch2=key.to(new_dtype),
167
+ beta=1,
168
+ alpha=self.scale_factor
169
+ ).view(attn_shape).to(initial_dtype)
170
+
171
+ if upcast:
172
+ # Use a fused kernel to prevent a large overhead from casting and scaling.
173
+ # Sub-optimal when the key length is not a multiple of 8.
174
+ if attention_mask is None:
175
+ attn_weights = upcast_softmax(attn_weights, softmax_dtype)
176
+ else:
177
+ attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, softmax_dtype)
178
+ else:
179
+ if attention_mask is not None:
180
+ # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
181
+ attn_weights = torch.where(attention_mask, attn_weights, mask_value)
182
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
183
+
184
+ attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)
185
+
186
+ return attn_output, attn_weights
187
+
188
+ def forward(
189
+ self,
190
+ hidden_states: torch.Tensor,
191
+ layer_past: Optional[torch.Tensor] = None,
192
+ attention_mask: Optional[torch.Tensor] = None,
193
+ alibi: Optional[torch.Tensor] = None,
194
+ use_cache: Optional[bool] = False,
195
+ output_attentions: Optional[bool] = False,
196
+ ) -> Union[
197
+ Tuple[torch.Tensor, Optional[torch.Tensor]],
198
+ Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
199
+ ]:
200
+ query = self.q(hidden_states)
201
+ kv = self.kv(hidden_states)
202
+ key, value = kv.split(self.head_dim, dim=-1)
203
+
204
+ if layer_past is not None:
205
+ past_key, past_value = layer_past
206
+ key = torch.cat((past_key, key), dim=-2)
207
+ value = torch.cat((past_value, value), dim=-2)
208
+
209
+ if use_cache is True:
210
+ present = (key, value)
211
+ else:
212
+ present = None
213
+
214
+ attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, alibi)
215
+ attn_output = self.c_proj(attn_output)
216
+
217
+ outputs = (attn_output, present)
218
+ if output_attentions:
219
+ attn_weights = attn_weights.transpose(1, 2)
220
+ outputs += (attn_weights,)
221
+
222
+ return outputs # a, present, (attentions)
223
+
224
+
225
+ class MLP(nn.Module):
226
+
227
+ def __init__(self, intermediate_size, config, multiple_of: int = 256):
228
+ super().__init__()
229
+ embed_dim = config.hidden_size
230
+ hidden_dim = intermediate_size
231
+ hidden_dim = int(2 * hidden_dim / 3)
232
+ self.hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
233
+ self.gate_up_proj = nn.Linear(embed_dim, self.hidden_dim * 2, bias=False)
234
+ self.c_proj = nn.Linear(self.hidden_dim, embed_dim, bias=False)
235
+
236
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
237
+ up_proj = self.gate_up_proj(x)
238
+ x1, x2 = torch.split(up_proj, self.hidden_dim, dim=-1)
239
+ x = self.c_proj(F.silu(x1) * x2)
240
+ return x
241
+
242
+
243
+ class LayerNormNoBias(nn.Module):
244
+
245
+ def __init__(self, shape: int, eps: float = 1e-5):
246
+ super().__init__()
247
+ self.shape = (shape,)
248
+ self.eps = eps
249
+ self.weight = nn.Parameter(torch.empty(self.shape))
250
+
251
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
252
+ return F.layer_norm(x, self.shape, self.weight, None, self.eps)
253
+
254
+
255
+ class GPTRefactBlock(nn.Module):
256
+ def __init__(self, config, layer_idx=None):
257
+ super().__init__()
258
+ hidden_size = config.hidden_size
259
+ self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
260
+
261
+ self.ln_1 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
262
+ self.attn = Attention(config, layer_idx=layer_idx)
263
+ self.ln_2 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
264
+ self.mlp = MLP(self.inner_dim, config)
265
+
266
+ def forward(
267
+ self,
268
+ hidden_states: Optional[Tuple[torch.Tensor]],
269
+ layer_past: Optional[torch.Tensor] = None,
270
+ attention_mask: Optional[torch.Tensor] = None,
271
+ alibi: Optional[torch.Tensor] = None,
272
+ use_cache: Optional[bool] = False,
273
+ output_attentions: Optional[bool] = False,
274
+ ) -> Union[
275
+ Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
276
+ ]:
277
+ hidden_states_norm = self.ln_1(hidden_states)
278
+ attn_outputs = self.attn(
279
+ hidden_states_norm,
280
+ layer_past=layer_past,
281
+ attention_mask=attention_mask,
282
+ alibi=alibi,
283
+ use_cache=use_cache,
284
+ output_attentions=output_attentions,
285
+ )
286
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
287
+ outputs = attn_outputs[1:]
288
+ # residual connection
289
+ mix = attn_output + hidden_states
290
+
291
+ norm_mix = self.ln_2(mix)
292
+ feed_forward_hidden_states = self.mlp(norm_mix)
293
+ # residual connection
294
+ hidden_states = mix + feed_forward_hidden_states
295
+
296
+ if use_cache:
297
+ outputs = (hidden_states,) + outputs
298
+ else:
299
+ outputs = (hidden_states,) + outputs[1:]
300
+
301
+ return outputs # hidden_states, present, (attentions, cross_attentions)
302
+
303
+
304
+ class GPTRefactPreTrainedModel(PreTrainedModel):
305
+
306
+ config_class = GPTRefactConfig
307
+ base_model_prefix = "transformer"
308
+ supports_gradient_checkpointing = True
309
+ _no_split_modules = ["GPTRefactBlock"]
310
+ _skip_keys_device_placement = "past_key_values"
311
+
312
+ def __init__(self, *inputs, **kwargs):
313
+ super().__init__(*inputs, **kwargs)
314
+
315
+ def _init_weights(self, module):
316
+ if isinstance(module, (MLP, Attention)):
317
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
318
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
319
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
320
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
321
+ #
322
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
323
+ module.c_proj.weight.data.normal_(
324
+ mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
325
+ )
326
+ module.c_proj._is_hf_initialized = True
327
+ elif isinstance(module, nn.Linear):
328
+ # Slightly different from the TF version which uses truncated_normal for initialization
329
+ # cf https://github.com/pytorch/pytorch/pull/5617
330
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
331
+ if module.bias is not None:
332
+ module.bias.data.zero_()
333
+ elif isinstance(module, nn.Embedding):
334
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
335
+ if module.padding_idx is not None:
336
+ module.weight.data[module.padding_idx].zero_()
337
+ elif isinstance(module, LayerNormNoBias):
338
+ module.weight.data.fill_(1.0)
339
+
340
+
341
+ class GPTRefactModel(GPTRefactPreTrainedModel):
342
+
343
+ def __init__(self, config):
344
+ super().__init__(config)
345
+ self.embed_dim = config.hidden_size
346
+ self.num_heads = config.num_attention_heads
347
+ self.multi_query = config.multi_query
348
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
349
+
350
+ self.h = nn.ModuleList([GPTRefactBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
351
+
352
+ self.max_positions = config.max_position_embeddings
353
+ self.attention_bias_in_fp32 = config.attention_bias_in_fp32
354
+ self.register_buffer(
355
+ "bias", torch.tril(torch.ones((self.max_positions, self.max_positions), dtype=torch.bool)),
356
+ persistent=False
357
+ )
358
+
359
+ self.gradient_checkpointing = False
360
+
361
+ # Initialize weights and apply final processing
362
+ self.post_init()
363
+
364
+ def get_input_embeddings(self):
365
+ return self.wte
366
+
367
+ def forward(
368
+ self,
369
+ input_ids: Optional[torch.Tensor] = None,
370
+ past_key_values: Optional[List[torch.Tensor]] = None,
371
+ attention_mask: Optional[torch.Tensor] = None,
372
+ inputs_embeds: Optional[torch.Tensor] = None,
373
+ use_cache: Optional[bool] = None,
374
+ output_attentions: Optional[bool] = None,
375
+ output_hidden_states: Optional[bool] = None,
376
+ return_dict: Optional[bool] = None,
377
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
378
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
379
+ output_hidden_states = (
380
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
381
+ )
382
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
383
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
384
+
385
+ if input_ids is not None and inputs_embeds is not None:
386
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
387
+ elif input_ids is not None:
388
+ input_shape = input_ids.size()
389
+ input_ids = input_ids.view(-1, input_shape[-1])
390
+ batch_size = input_ids.shape[0]
391
+ elif inputs_embeds is not None:
392
+ input_shape = inputs_embeds.size()[:-1]
393
+ batch_size = inputs_embeds.shape[0]
394
+ else:
395
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
396
+
397
+ if batch_size <= 0:
398
+ raise ValueError("batch_size has to be defined and > 0")
399
+
400
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
401
+
402
+ if past_key_values is None:
403
+ past_length = 0
404
+ past_key_values = tuple([None] * len(self.h))
405
+ else:
406
+ past_length = past_key_values[0][0].size(-2)
407
+
408
+ query_length = input_shape[-1]
409
+ seq_length_with_past = past_length + query_length
410
+
411
+ # Self-attention mask.
412
+ key_length = past_length + query_length
413
+ self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
414
+ if attention_mask is not None:
415
+ self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
416
+ dtype=torch.bool, device=self_attention_mask.device
417
+ )
418
+
419
+ # MQA models: (batch_size, query_length, n_heads, key_length)
420
+ attention_mask = self_attention_mask.unsqueeze(2)
421
+
422
+ hidden_states = self.wte(input_ids) if inputs_embeds is None else inputs_embeds
423
+
424
+ alibi_dtype = torch.float32 if self.attention_bias_in_fp32 else self.wte.weight.dtype
425
+ alibi = get_alibi_biases(hidden_states.shape[0], seq_length_with_past,
426
+ self.num_heads, device, alibi_dtype)[:, :, -query_length:, :]
427
+
428
+ output_shape = input_shape + (hidden_states.size(-1),)
429
+
430
+ presents = [] if use_cache else None
431
+ all_self_attentions = () if output_attentions else None
432
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
433
+ all_hidden_states = () if output_hidden_states else None
434
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
435
+ if output_hidden_states:
436
+ all_hidden_states = all_hidden_states + (hidden_states,)
437
+
438
+ if self.gradient_checkpointing and self.training:
439
+
440
+ def create_custom_forward(module):
441
+ def custom_forward(*inputs):
442
+ # None for past_key_value
443
+ return module(*inputs, use_cache, output_attentions)
444
+
445
+ return custom_forward
446
+
447
+ outputs = torch.utils.checkpoint.checkpoint(
448
+ create_custom_forward(block),
449
+ hidden_states,
450
+ None,
451
+ attention_mask,
452
+ alibi
453
+ )
454
+ else:
455
+ outputs = block(
456
+ hidden_states,
457
+ layer_past=layer_past,
458
+ attention_mask=attention_mask,
459
+ alibi=alibi,
460
+ use_cache=use_cache,
461
+ output_attentions=output_attentions,
462
+ )
463
+
464
+ hidden_states = outputs[0]
465
+ if use_cache:
466
+ presents.append(outputs[1])
467
+
468
+ if output_attentions:
469
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
470
+ if self.config.add_cross_attention:
471
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
472
+
473
+ hidden_states = hidden_states.view(output_shape)
474
+ # Add last hidden state
475
+ if output_hidden_states:
476
+ all_hidden_states = all_hidden_states + (hidden_states,)
477
+
478
+ if not return_dict:
479
+ return tuple(
480
+ v
481
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
482
+ if v is not None
483
+ )
484
+
485
+ return BaseModelOutputWithPastAndCrossAttentions(
486
+ last_hidden_state=hidden_states,
487
+ past_key_values=presents,
488
+ hidden_states=all_hidden_states,
489
+ attentions=all_self_attentions,
490
+ cross_attentions=all_cross_attentions,
491
+ )
492
+
493
+
494
+ class GPTRefactForCausalLM(GPTRefactPreTrainedModel):
495
+
496
+ _tied_weights_keys = ["lm_head.weight", "ln_f.weight"]
497
+
498
+ def __init__(self, config):
499
+ super().__init__(config)
500
+ self.transformer = GPTRefactModel(config)
501
+ self.ln_f = LayerNormNoBias(self.transformer.embed_dim, eps=config.layer_norm_epsilon)
502
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
503
+
504
+ # Initialize weights and apply final processing
505
+ self.post_init()
506
+
507
+ # gradient checkpointing support for lower versions of transformers
508
+ import transformers
509
+ from packaging import version
510
+
511
+ def _set_gradient_checkpointing(module, value=False):
512
+ if isinstance(module, GPTRefactModel):
513
+ module.gradient_checkpointing = value
514
+
515
+ v = version.parse(transformers.__version__)
516
+ if v.major <= 4 and v.minor < 35:
517
+ self._set_gradient_checkpointing = _set_gradient_checkpointing
518
+
519
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
520
+ if inputs_embeds is not None and past_key_values is None:
521
+ model_inputs = {"inputs_embeds": inputs_embeds}
522
+ else:
523
+ if past_key_values is not None:
524
+ model_inputs = {"input_ids": input_ids[..., -1:]}
525
+ else:
526
+ model_inputs = {"input_ids": input_ids}
527
+
528
+ model_inputs.update(
529
+ {
530
+ "past_key_values": past_key_values,
531
+ "use_cache": kwargs.get("use_cache"),
532
+ }
533
+ )
534
+ return model_inputs
535
+
536
+ def forward(
537
+ self,
538
+ input_ids: Optional[torch.Tensor] = None,
539
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
540
+ attention_mask: Optional[torch.Tensor] = None,
541
+ inputs_embeds: Optional[torch.Tensor] = None,
542
+ labels: Optional[torch.Tensor] = None,
543
+ use_cache: Optional[bool] = None,
544
+ output_attentions: Optional[bool] = None,
545
+ output_hidden_states: Optional[bool] = None,
546
+ return_dict: Optional[bool] = None,
547
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
548
+ r"""
549
+ labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
550
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
551
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
552
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
553
+ """
554
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
555
+
556
+ transformer_outputs = self.transformer(
557
+ input_ids,
558
+ past_key_values=past_key_values,
559
+ attention_mask=attention_mask,
560
+ inputs_embeds=inputs_embeds,
561
+ use_cache=use_cache,
562
+ output_attentions=output_attentions,
563
+ output_hidden_states=output_hidden_states,
564
+ return_dict=return_dict,
565
+ )
566
+ hidden_states = transformer_outputs[0]
567
+
568
+ x = self.ln_f(hidden_states)
569
+ lm_logits = self.lm_head(x)
570
+
571
+ loss = None
572
+ if labels is not None:
573
+ # Shift so that tokens < n predict n
574
+ shift_logits = lm_logits[..., :-1, :].contiguous()
575
+ shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
576
+ # Flatten the tokens
577
+ loss_fct = CrossEntropyLoss()
578
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
579
+
580
+ if not return_dict:
581
+ output = (lm_logits,) + transformer_outputs[1:]
582
+ return ((loss,) + output) if loss is not None else output
583
+
584
+ return CausalLMOutputWithCrossAttentions(
585
+ loss=loss,
586
+ logits=lm_logits,
587
+ past_key_values=transformer_outputs.past_key_values,
588
+ hidden_states=transformer_outputs.hidden_states,
589
+ attentions=transformer_outputs.attentions,
590
+ cross_attentions=transformer_outputs.cross_attentions,
591
+ )
592
+
593
+ @staticmethod
594
+ def _reorder_cache(
595
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
596
+ ) -> Tuple[Tuple[torch.Tensor]]:
597
+ """
598
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
599
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
600
+ beam_idx at every generation step.
601
+ """
602
+ return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
plots.png ADDED
smash_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "api_key": null,
3
+ "verify_url": "http://johnrachwan.pythonanywhere.com",
4
+ "smash_config": {
5
+ "pruners": "None",
6
+ "factorizers": "None",
7
+ "quantizers": "['llm-int8']",
8
+ "compilers": "None",
9
+ "task": "text_text_generation",
10
+ "device": "cuda",
11
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelswcfd21k6",
12
+ "batch_size": 1,
13
+ "model_name": "smallcloudai/Refact-1_6B-fim",
14
+ "pruning_ratio": 0.0,
15
+ "n_quantization_bits": 8,
16
+ "output_deviation": 0.005,
17
+ "max_batch_size": 1,
18
+ "qtype_weight": "torch.qint8",
19
+ "qtype_activation": "torch.quint8",
20
+ "qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
21
+ "qscheme": "torch.per_tensor_symmetric",
22
+ "qconfig": "x86",
23
+ "group_size": 128,
24
+ "damp_percent": 0.1,
25
+ "save_load_fn": "bitsandbytes"
26
+ }
27
+ }