Precillieo's picture
Upload tokenizer
d9f7099 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - yashtiwari/PaulMooney-Medical-ASR-Data
metrics:
  - wer
model-index:
  - name: Whisper Dr Patient Conversation
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Medical ASR
          type: yashtiwari/PaulMooney-Medical-ASR-Data
        metrics:
          - type: wer
            value: 21.313058170407917
            name: Wer

Whisper Dr Patient Conversation

This model is a fine-tuned version of openai/whisper-medium on the Medical ASR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0967
  • Wer: 21.3131

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6737 0.1357 100 0.2638 14.9650
0.212 0.2714 200 0.1960 11.7789
0.2321 0.4071 300 0.1506 14.8202
0.1462 0.5427 400 0.1126 18.3683
0.1419 0.6784 500 0.0967 21.3131

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3