SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("Prashasst/anime-recommendation-model")
# Run inference
sentences = [
    'I want anime like onepiece.',
    'Pirates',
    'Action',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric anime-recommendation-dev anime-recommendation-test
pearson_cosine 0.6145 0.6536
spearman_cosine 0.6215 0.6394

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,353 training samples
  • Columns: description, genre, and label
  • Approximate statistics based on the first 1000 samples:
    description genre label
    type string string float
    details
    • min: 15 tokens
    • mean: 97.39 tokens
    • max: 193 tokens
    • min: 3 tokens
    • mean: 3.82 tokens
    • max: 8 tokens
    • min: 0.1
    • mean: 0.71
    • max: 1.0
  • Samples:
    description genre label
    Mitsuha Miyamizu, a high school girl, yearns to live the life of a boy in the bustling city of Tokyoโ€”a dream that stands in stark contrast to her present life in the countryside. Meanwhile in the city, Taki Tachibana lives a busy life as a high school student while juggling his part-time job and hopes for a future in architecture. Environmental 0.6
    Jinta Yadomi and his group of childhood friends have become estranged after a tragic accident split them apart. Now in their high school years, a sudden surprise forces each of them to confront their guilt over what happened that day and come to terms with the ghosts of their past. Hikikomori 0.79
    The second season of Ansatsu Kyoushitsu. Episodic 0.44
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 294 evaluation samples
  • Columns: description, genre, and label
  • Approximate statistics based on the first 294 samples:
    description genre label
    type string string float
    details
    • min: 15 tokens
    • mean: 92.48 tokens
    • max: 193 tokens
    • min: 3 tokens
    • mean: 3.73 tokens
    • max: 8 tokens
    • min: 0.1
    • mean: 0.69
    • max: 1.0
  • Samples:
    description genre label
    Summer is here, and the heroes of Class 1-A and 1-B are in for the toughest training camp of their lives A group of seasoned pros pushes everyones Quirks to new heights as the students face one overwhelming challenge after another. Braving the elements in this secret location becomes the least of their worries when routine training turns into a critical struggle for survival. Transgender 0.2
    "In order for something to be obtained, something of equal value must be lost." Cyborg 0.72
    In the story, Subaru Natsuki is an ordinary high school student who is lost in an alternate world, where he is rescued by a beautiful, silver-haired girl. He stays near her to return the favor, but the destiny she is burdened with is more than Subaru can imagine. Enemies attack one by one, and both of them are killed. He then finds out he has the power to rewind death, back to the time he first came to this world. But only he remembers what has happened since. Primarily Female Cast 0.61
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss anime-recommendation-dev_spearman_cosine anime-recommendation-test_spearman_cosine
0.0068 1 0.3882 - - -
0.0135 2 0.2697 - - -
0.0203 3 0.2648 - - -
0.0270 4 0.3022 - - -
0.0338 5 0.2665 - - -
0.0405 6 0.2923 - - -
0.0473 7 0.3165 - - -
0.0541 8 0.2069 - - -
0.0608 9 0.271 - - -
0.0676 10 0.1974 - - -
0.0743 11 0.156 - - -
0.0811 12 0.1035 - - -
0.0878 13 0.1046 - - -
0.0946 14 0.0579 - - -
0.1014 15 0.0904 - - -
0.1081 16 0.0734 - - -
0.1149 17 0.0396 - - -
0.1216 18 0.0219 - - -
0.1284 19 0.0672 - - -
0.1351 20 0.0567 - - -
0.1419 21 0.0969 - - -
0.1486 22 0.0258 - - -
0.1554 23 0.1174 - - -
0.1622 24 0.0334 - - -
0.1689 25 0.0661 - - -
0.1757 26 0.0365 - - -
0.1824 27 0.049 - - -
0.1892 28 0.0889 - - -
0.1959 29 0.0179 - - -
0.2027 30 0.0255 - - -
0.2095 31 0.0312 - - -
0.2162 32 0.0312 - - -
0.2230 33 0.0619 - - -
0.2297 34 0.0358 - - -
0.2365 35 0.0468 - - -
0.2432 36 0.0601 - - -
0.25 37 0.0546 - - -
0.2568 38 0.0411 - - -
0.2635 39 0.0332 - - -
0.2703 40 0.0479 - - -
0.2770 41 0.0657 - - -
0.2838 42 0.0161 - - -
0.2905 43 0.0323 - - -
0.2973 44 0.0794 - - -
0.3041 45 0.0264 - - -
0.3108 46 0.0391 - - -
0.3176 47 0.0514 - - -
0.3243 48 0.0276 - - -
0.3311 49 0.0653 - - -
0.3378 50 0.0343 - - -
0.3446 51 0.0369 - - -
0.3514 52 0.0336 - - -
0.3581 53 0.0368 - - -
0.3649 54 0.0477 - - -
0.3716 55 0.0358 - - -
0.3784 56 0.0312 - - -
0.3851 57 0.0388 - - -
0.3919 58 0.0415 - - -
0.3986 59 0.02 - - -
0.4054 60 0.0459 - - -
0.4122 61 0.0302 - - -
0.4189 62 0.0519 - - -
0.4257 63 0.0283 - - -
0.4324 64 0.04 - - -
0.4392 65 0.0146 - - -
0.4459 66 0.033 - - -
0.4527 67 0.0365 - - -
0.4595 68 0.0579 - - -
0.4662 69 0.0253 - - -
0.4730 70 0.033 - - -
0.4797 71 0.0258 - - -
0.4865 72 0.0181 - - -
0.4932 73 0.0334 - - -
0.5 74 0.0415 - - -
0.5068 75 0.0258 - - -
0.5135 76 0.0304 - - -
0.5203 77 0.0211 - - -
0.5270 78 0.0334 - - -
0.5338 79 0.0278 - - -
0.5405 80 0.0209 - - -
0.5473 81 0.0391 - - -
0.5541 82 0.0274 - - -
0.5608 83 0.0213 - - -
0.5676 84 0.0293 - - -
0.5743 85 0.0205 - - -
0.5811 86 0.0258 - - -
0.5878 87 0.0262 - - -
0.5946 88 0.0109 - - -
0.6014 89 0.0268 - - -
0.6081 90 0.0304 - - -
0.6149 91 0.0328 - - -
0.6216 92 0.0173 - - -
0.6284 93 0.0253 - - -
0.6351 94 0.0245 - - -
0.6419 95 0.0232 - - -
0.6486 96 0.0309 - - -
0.6554 97 0.0209 - - -
0.6622 98 0.0169 - - -
0.6689 99 0.024 - - -
0.6757 100 0.0166 0.0284 0.6215 -
0.6824 101 0.0202 - - -
0.6892 102 0.0181 - - -
0.6959 103 0.0413 - - -
0.7027 104 0.0537 - - -
0.7095 105 0.0241 - - -
0.7162 106 0.0199 - - -
0.7230 107 0.0227 - - -
0.7297 108 0.0283 - - -
0.7365 109 0.0372 - - -
0.7432 110 0.0193 - - -
0.75 111 0.0147 - - -
0.7568 112 0.0594 - - -
0.7635 113 0.0185 - - -
0.7703 114 0.0674 - - -
0.7770 115 0.0212 - - -
0.7838 116 0.0268 - - -
0.7905 117 0.0233 - - -
0.7973 118 0.0276 - - -
0.8041 119 0.0242 - - -
0.8108 120 0.034 - - -
0.8176 121 0.0231 - - -
0.8243 122 0.0252 - - -
0.8311 123 0.0294 - - -
0.8378 124 0.0205 - - -
0.8446 125 0.0302 - - -
0.8514 126 0.0468 - - -
0.8581 127 0.0311 - - -
0.8649 128 0.0365 - - -
0.8716 129 0.0257 - - -
0.8784 130 0.0339 - - -
0.8851 131 0.0359 - - -
0.8919 132 0.0404 - - -
0.8986 133 0.0223 - - -
0.9054 134 0.0232 - - -
0.9122 135 0.0295 - - -
0.9189 136 0.0244 - - -
0.9257 137 0.0168 - - -
0.9324 138 0.0319 - - -
0.9392 139 0.0328 - - -
0.9459 140 0.0295 - - -
0.9527 141 0.0262 - - -
0.9595 142 0.0238 - - -
0.9662 143 0.0181 - - -
0.9730 144 0.017 - - -
0.9797 145 0.0244 - - -
0.9865 146 0.0264 - - -
0.9932 147 0.0194 - - -
1.0 148 0.0028 - - 0.6394

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Prashasst/anime-recommendation-model

Finetuned
(184)
this model

Space using Prashasst/anime-recommendation-model 1

Evaluation results