BEN / README.md
Max Meyer
Update README.md
2cd441b verified
|
raw
history blame
1.27 kB
metadata
license: apache-2.0

BEN - Background Erase Network (Base Model)

BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.

  • MADE IN AMERICA

Quick Start Code

from BEN import model
from PIL import Image
import torch


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

file = "./image2.jpg" # input image

model = model.BEN_Base().to(device).eval() #init pipeline 

model.loadcheckpoints("./BEN/BEN_Base.pth")
image = Image.open(file)
mask, foreground = model.inference(image)

mask.save("./mask.png")
foreground.save("./foreground.png")


BEN SOA Benchmarks on Disk 5k Eval

BEN_Base + BEN_Refiner (commercial model please contact us for more information):

  • MAE: 0.0283
  • DICE: 0.8976
  • IOU: 0.8430
  • BER: 0.0542
  • ACC: 0.9725

BEN_Base:

  • MAE: 0.0331
  • DICE: 0.8743
  • IOU: 0.8301
  • BER: 0.0560
  • ACC: 0.9700

MVANet (old SOA):

  • MAE: 0.0353
  • DICE: 0.8676
  • IOU: 0.8104
  • BER: 0.0639
  • ACC: 0.9660

Features

  • Background removal from images
  • Generates both binary mask and foreground image
  • CUDA support for GPU acceleration
  • Simple API for easy integration

Installation

  1. Clone Repo
  2. Install requirements.txt