metadata
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-300m-ca
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 0.15636874077301
- name: Test CER
type: cer
value: 0.04086725403909639
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 0.09940385143350199
- name: Test CER
type: cer
value: 0.026906712890009454
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 0.27349193517342263
- name: Test CER
type: cer
value: 0.11571091827304163
wav2vec2-xls-r-300m-ca
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA dataset. It achieves the following results on the evaluation set:
- Loss: 0.2758
- Wer: 0.1792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 6.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.2099 | 0.09 | 500 | 3.4125 | 1.0 |
2.9961 | 0.18 | 1000 | 2.9224 | 1.0 |
2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 |
1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 |
1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 |
1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 |
1.052 | 0.62 | 3500 | 0.2173 | 0.2032 |
1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 |
1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 |
1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 |
1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 |
1.213 | 3.2 | 6000 | 0.3051 | 0.1980 |
1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 |
1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 |
1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 |
1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 |
1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 |
1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 |
1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 |
1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 |
1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 |
1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.1
- Tokenizers 0.11.0