PaulD's picture
End of training
d94f4df verified
|
raw
history blame
2.16 kB
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- trl
- kto
- generated_from_trainer
model-index:
- name: kto-aligned-model-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pauld/huggingface/runs/em482maw)
# kto-aligned-model-lora
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5001
- Eval/rewards/chosen: 0.1739
- Eval/logps/chosen: -0.4029
- Eval/rewards/rejected: 0.1787
- Eval/logps/rejected: -0.0087
- Eval/rewards/margins: -0.0048
- Eval/kl: 1.7305
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 12
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5 | 1.0 | 9 | 0.5000 | 1.2364 |
| 0.4994 | 2.0 | 18 | 0.5002 | 1.7169 |
| 0.4985 | 3.0 | 27 | 0.5003 | 1.7311 |
| 0.4981 | 4.0 | 36 | 0.5002 | 1.7306 |
| 0.4976 | 5.0 | 45 | 0.5001 | 1.7305 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.2
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1