my-fine-tuned-model
This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:
- Loss: 1.6767
- Mean Iou: 0.1588
- Mean Accuracy: 0.2007
- Overall Accuracy: 0.7509
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8733
- Accuracy Flat-sidewalk: 0.9442
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.3911
- Accuracy Flat-parkingdriveway: 0.0002
- Accuracy Flat-railtrack: 0.0
- Accuracy Flat-curb: 0.0
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.8925
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: nan
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8894
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0009
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9669
- Accuracy Nature-terrain: 0.6018
- Accuracy Sky: 0.8632
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0000
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.5360
- Iou Flat-sidewalk: 0.7953
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.3852
- Iou Flat-parkingdriveway: 0.0002
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.0
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.6843
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: nan
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.5805
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0009
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7337
- Iou Nature-terrain: 0.5424
- Iou Sky: 0.8220
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0000
- Iou Void-unclear: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.9696 | 0.2 | 20 | 2.8275 | 0.0948 | 0.1415 | 0.6309 | nan | 0.6575 | 0.9107 | 0.0063 | 0.1826 | 0.0104 | 0.0 | 0.0020 | 0.0 | 0.0 | 0.7030 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7348 | 0.0 | 0.0526 | 0.0017 | 0.0 | nan | 0.0004 | 0.0002 | 0.0 | 0.0 | 0.9372 | 0.0527 | 0.1780 | 0.0 | 0.0000 | 0.0984 | 0.0 | 0.0 | 0.4367 | 0.7060 | 0.0047 | 0.1714 | 0.0091 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.5700 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4605 | 0.0 | 0.0337 | 0.0015 | 0.0 | nan | 0.0003 | 0.0002 | 0.0 | 0.0 | 0.5601 | 0.0441 | 0.1768 | 0.0 | 0.0000 | 0.0466 | 0.0 |
2.5415 | 0.4 | 40 | 2.4456 | 0.1126 | 0.1620 | 0.6774 | nan | 0.8004 | 0.9103 | 0.0018 | 0.0850 | 0.0035 | 0.0 | 0.0020 | 0.0 | 0.0 | 0.7352 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8639 | 0.0 | 0.0178 | 0.0000 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9712 | 0.0748 | 0.7159 | 0.0 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.4600 | 0.7407 | 0.0017 | 0.0827 | 0.0034 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.6149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5326 | 0.0 | 0.0170 | 0.0000 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6032 | 0.0721 | 0.6944 | 0.0 | 0.0 | 0.0028 | 0.0 |
2.3174 | 0.6 | 60 | 2.2279 | 0.1232 | 0.1695 | 0.6931 | nan | 0.8442 | 0.9167 | 0.0 | 0.0799 | 0.0010 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8018 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8769 | 0.0 | 0.0051 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9726 | 0.1943 | 0.7298 | 0.0 | 0.0 | 0.0008 | 0.0 | nan | 0.4596 | 0.7613 | 0.0 | 0.0787 | 0.0009 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6721 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5541 | 0.0 | 0.0051 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6358 | 0.1838 | 0.7134 | 0.0 | 0.0 | 0.0008 | 0.0 |
2.2451 | 0.8 | 80 | 2.0572 | 0.1302 | 0.1737 | 0.6974 | nan | 0.8615 | 0.9134 | 0.0 | 0.0646 | 0.0000 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8375 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8514 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9760 | 0.2230 | 0.8279 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.4523 | 0.7700 | 0.0 | 0.0640 | 0.0000 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6731 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5634 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6439 | 0.2111 | 0.7855 | 0.0 | 0.0 | 0.0002 | 0.0 |
2.1085 | 1.0 | 100 | 1.9511 | 0.1458 | 0.1905 | 0.7229 | nan | 0.8854 | 0.9090 | 0.0 | 0.2045 | 0.0001 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8710 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8821 | 0.0 | 0.0021 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9619 | 0.5303 | 0.8495 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.4688 | 0.7849 | 0.0 | 0.2007 | 0.0001 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6649 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5579 | 0.0 | 0.0021 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7228 | 0.4830 | 0.7802 | 0.0 | 0.0 | 0.0002 | 0.0 |
1.922 | 1.2 | 120 | 1.8311 | 0.1530 | 0.1956 | 0.7400 | nan | 0.8766 | 0.9349 | 0.0 | 0.3273 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8934 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8877 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9635 | 0.5479 | 0.8259 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.5080 | 0.7901 | 0.0 | 0.3245 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6769 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5783 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7257 | 0.4967 | 0.7942 | 0.0 | 0.0 | 0.0002 | 0.0 |
1.8359 | 1.4 | 140 | 1.7618 | 0.1532 | 0.1953 | 0.7410 | nan | 0.8565 | 0.9426 | 0.0 | 0.3500 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8806 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8729 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9731 | 0.5240 | 0.8473 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.5324 | 0.7846 | 0.0 | 0.3453 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6844 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5774 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7026 | 0.4645 | 0.8113 | 0.0 | 0.0 | 0.0001 | 0.0 |
2.0133 | 1.6 | 160 | 1.7325 | 0.1600 | 0.2023 | 0.7521 | nan | 0.8717 | 0.9398 | 0.0 | 0.4123 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8818 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8966 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9644 | 0.6293 | 0.8755 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5406 | 0.7934 | 0.0 | 0.4029 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6887 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5760 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7380 | 0.5522 | 0.8273 | 0.0 | 0.0 | 0.0000 | 0.0 |
1.6493 | 1.8 | 180 | 1.6853 | 0.1595 | 0.2015 | 0.7505 | nan | 0.8856 | 0.9408 | 0.0 | 0.3517 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8888 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8978 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9610 | 0.6444 | 0.8762 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.5191 | 0.7991 | 0.0 | 0.3470 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6906 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5799 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7506 | 0.5869 | 0.8285 | 0.0 | 0.0 | 0.0001 | 0.0 |
1.8097 | 2.0 | 200 | 1.6767 | 0.1588 | 0.2007 | 0.7509 | nan | 0.8733 | 0.9442 | 0.0 | 0.3911 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8925 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8894 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9669 | 0.6018 | 0.8632 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5360 | 0.7953 | 0.0 | 0.3852 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6843 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5805 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7337 | 0.5424 | 0.8220 | 0.0 | 0.0 | 0.0000 | 0.0 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.1.1+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Paruone/my-fine-tuned-model
Base model
nvidia/segformer-b1-finetuned-ade-512-512