wav2vec2-large-xlsr-53-th-speech-emotion-recognition-4c

This model is a fine-tuned version of airesearch/wav2vec2-large-xlsr-53-th on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4840
  • Accuracy: 0.8270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3113 0.9963 67 1.3085 0.3879
0.9422 1.9926 134 0.9515 0.5786
0.8097 2.9888 201 0.7753 0.6958
0.7 4.0 269 0.6606 0.7591
0.6038 4.9963 336 0.5957 0.7833
0.5796 5.9926 403 0.6206 0.7805
0.5413 6.9888 470 0.5471 0.7991
0.4974 8.0 538 0.5784 0.8009
0.4623 8.9963 605 0.5212 0.8130
0.4503 9.9926 672 0.5237 0.8242
0.428 10.9888 739 0.4823 0.8233
0.3958 12.0 807 0.5192 0.8270
0.3953 12.9963 874 0.4854 0.8270
0.3696 13.9926 941 0.4877 0.8251
0.3715 14.9888 1008 0.4845 0.8279
0.386 16.0 1076 0.4829 0.8233
0.3505 16.9963 1143 0.4850 0.8214
0.3166 17.9926 1210 0.4973 0.8270
0.366 18.9888 1277 0.4829 0.8270
0.3386 19.9257 1340 0.4840 0.8270

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Paranchai/wav2vec2-large-xlsr-53-th-speech-emotion-recognition-4c

Finetuned
(4)
this model