output2

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0553
  • Accuracy: 0.7264
  • F1: 0.7307

Model description

  from transformers import pipeline
 
  model = pipeline(model="Pannathad/xlm-roberta-base-th-product-review-sentiment-analysis")
  result = model(["มีการกันกระแทกอย่างดี", "มีการห่อบับเบิ้ลอย่างหนา","มาส่งไว","แต่ราคาแพงมาก"])
  # result
  [
    {'label': 'Quality', 'score': 0.8555123209953308},
    {'label': 'Packaging', 'score': 0.9143754243850708},
    {'label': 'DeliveryTime', 'score': 0.9672013521194458},
    {'label': 'NEG-Price', 'score': 0.6597796082496643}
  ]

 

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.5671 1.0 26 2.3849 0.2712 0.1157
2.4121 2.0 52 2.2398 0.3438 0.2029
2.2116 3.0 78 1.8608 0.4649 0.3680
1.8806 4.0 104 1.5004 0.5763 0.5189
1.5356 5.0 130 1.2657 0.6077 0.5605
1.2656 6.0 156 1.0881 0.6852 0.6578
1.0485 7.0 182 1.1436 0.6707 0.6556
0.9568 8.0 208 1.0253 0.7143 0.6974
0.813 9.0 234 0.9546 0.7070 0.6900
0.7071 10.0 260 0.9333 0.7458 0.7287
0.613 11.0 286 1.0258 0.7167 0.7038
0.5596 12.0 312 0.9554 0.7119 0.6996
0.5081 13.0 338 1.0385 0.7215 0.7147
0.4615 14.0 364 0.9769 0.7264 0.7165
0.4102 15.0 390 0.9845 0.7215 0.7213
0.3453 16.0 416 0.9315 0.7361 0.7343
0.3521 17.0 442 0.9916 0.7409 0.7439
0.2984 18.0 468 1.0486 0.7264 0.7261
0.2737 19.0 494 1.0325 0.7215 0.7239
0.2611 20.0 520 1.0210 0.7337 0.7371
0.2436 21.0 546 1.0508 0.7264 0.7283
0.2451 22.0 572 1.0487 0.7312 0.7344
0.2285 23.0 598 1.0434 0.7337 0.7366
0.2072 24.0 624 1.0530 0.7288 0.7326
0.2078 25.0 650 1.0553 0.7264 0.7307

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Pannathad/xlm-roberta-base-th-product-review-sentiment-analysis

Finetuned
(2731)
this model