FT-English-10maa / README.md
Pageee's picture
End of training
ccc6a28 verified
|
raw
history blame
2.44 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - librispeech_asr
metrics:
  - wer
model-index:
  - name: Whisper-Small En-10m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: librispeech
          type: librispeech_asr
          config: default
          split: None
          args: 'config: en, split: test-clean'
        metrics:
          - name: Wer
            type: wer
            value: 3.7424325811777654

Whisper-Small En-10m

This model is a fine-tuned version of openai/whisper-small on the librispeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3635
  • Wer: 3.7424

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.482 33.3333 100 0.7436 3.4183
0.2402 66.6667 200 0.5833 3.4448
0.0135 100.0 300 0.3881 3.5834
0.0029 133.3333 400 0.3731 3.6324
0.0019 166.6667 500 0.3685 3.6568
0.0014 200.0 600 0.3663 3.6854
0.0012 233.3333 700 0.3649 3.7098
0.0011 266.6667 800 0.3641 3.7241
0.001 300.0 900 0.3637 3.7465
0.001 333.3333 1000 0.3635 3.7424

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1