metadata
license: apache-2.0
base_model:
- THUDM/CogVideoX-5b
language:
- en
tags:
- video-generation
- paddlemix
简体中文 | English
VCtrl
🤗 Huggingface Space | 🌐 Github | 📜 arxiv | 📷 Project
模型介绍
VCtrl 是一个通用的视频生成控制模型,通过引入辅助条件编码器,能够灵活对接各类控制模块,并且在不改变原始生成器的前提下避免了大规模重训练。该模型利用稀疏残差连接实现对控制信号的高效传递,同时通过统一的条件编码流程,将多种控制输入转换为标准化表示,再结合任务特定掩码以提升适应性。得益于这种统一而灵活的设计,VCtrl 可广泛应用于人物动画、场景转换、视频编辑等视频生成场景。下表展示我们在本代提供的视频生成模型列表相关信息:
模型名 | VCtrl-Canny | VCtrl-Mask | VCtrl-Pose | ||
---|---|---|---|---|---|
视频分辨率 | 720 * 480 | 720*480 | 720*480 & 480*720 | ||
推理精度 | FP16(推荐) | ||||
单GPU显存消耗 | V100: 32GB minimum* | ||||
推理速度 (Step = 25, FP16) |
单卡A100: ~300秒(49帧) 单卡V100: ~400秒(49帧) |
||||
提示词语言 | English* | ||||
提示词长度上限 | 224 Tokens | ||||
视频长度 | T2V模型只支持49帧,I2V模型可以扩展为任意帧 | ||||
帧率 | 30 帧 / 秒 |
快速开始 🤗
本模型已经支持使用 paddlemix 的 ppdiffusers 库进行部署,你可以按照以下步骤进行部署。
我们推荐您进入我们的 github以获得更好的体验。
- 安装对应的依赖
# 克隆 PaddleMIX 仓库
git clone https://github.com/PaddlePaddle/PaddleMIX.git
#安装paddlemix
cd PaddleMIX
pip install -e .
# 安装ppdiffusers
pip install -e ppdiffusers
# 安装paddlenlp
pip install paddlenlp==v3.0.0-beta2
# 进入 vctrl目录
cd ppdiffusers/examples/ppvctrl
# 安装其他所需的依赖
pip install -r requirements.txt
#安装paddlex
pip install paddlex==3.0.0b2
- 运行代码
import os
import paddle
import numpy as np
from decord import VideoReader
from moviepy.editor import ImageSequenceClip
from PIL import Image
from ppdiffusers import (
CogVideoXDDIMScheduler,
CogVideoXTransformer3DVCtrlModel,
CogVideoXVCtrlPipeline,
VCtrlModel,
)
def write_mp4(video_path, samples, fps=8):
clip = ImageSequenceClip(samples, fps=fps)
clip.write_videofile(video_path, audio_codec="aac")
def save_vid_side_by_side(batch_output, validation_control_images, output_folder, fps):
flattened_batch_output = [img for sublist in batch_output for img in sublist]
ori_video_path = output_folder + "/origin_predict.mp4"
video_path = output_folder + "/test_1.mp4"
ori_final_images = []
final_images = []
outputs = []
def get_concat_h(im1, im2):
dst = Image.new("RGB", (im1.width + im2.width, max(im1.height, im2.height)))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
for image_list in zip(validation_control_images, flattened_batch_output):
predict_img = image_list[1].resize(image_list[0].size)
result = get_concat_h(image_list[0], predict_img)
ori_final_images.append(np.array(image_list[1]))
final_images.append(np.array(result))
outputs.append(np.array(predict_img))
write_mp4(ori_video_path, ori_final_images, fps=fps)
write_mp4(video_path, final_images, fps=fps)
output_path = output_folder + "/output.mp4"
write_mp4(output_path, outputs, fps=fps)
def load_images_from_folder_to_pil(folder):
images = []
valid_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"}
def frame_number(filename):
new_pattern_match = re.search("frame_(\\d+)_7fps", filename)
if new_pattern_match:
return int(new_pattern_match.group(1))
matches = re.findall("\\d+", filename)
if matches:
if matches[-1] == "0000" and len(matches) > 1:
return int(matches[-2])
return int(matches[-1])
return float("inf")
sorted_files = sorted(os.listdir(folder), key=frame_number)
for filename in sorted_files:
ext = os.path.splitext(filename)[1].lower()
if ext in valid_extensions:
img = Image.open(os.path.join(folder, filename)).convert("RGB")
images.append(img)
return images
def load_images_from_video_to_pil(video_path):
images = []
vr = VideoReader(video_path)
length = len(vr)
for idx in range(length):
frame = vr[idx].asnumpy()
images.append(Image.fromarray(frame))
return images
validation_control_images = load_images_from_video_to_pil('your_path')
prompt = 'Group of fishes swimming in aquarium.'
vctrl = VCtrlModel.from_pretrained(
paddlemix/vctrl-5b-t2v-canny,
low_cpu_mem_usage=True,
paddle_dtype=paddle.float16
)
pipeline = CogVideoXVCtrlPipeline.from_pretrained(
paddlemix/cogvideox-5b-vctrl,
vctrl=vctrl,
paddle_dtype=paddle.float16,
low_cpu_mem_usage=True,
map_location="cpu",
)
pipeline.scheduler = CogVideoXDDIMScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
pipeline.vae.enable_tiling()
pipeline.vae.enable_slicing()
task='canny'
final_result=[]
video = pipeline(
prompt=prompt,
num_inference_steps=25,
num_frames=49,
guidance_scale=35,
generator=paddle.Generator().manual_seed(42),
conditioning_frames=validation_control_images[:num_frames],
conditioning_frame_indices=list(range(num_frames)),
conditioning_scale=1.0,
width=720,
height=480,
task='canny',
conditioning_masks=validation_mask_images[:num_frames] if task == "mask" else None,
vctrl_layout_type='spacing',
).frames[0]
final_result.append(video)
save_vid_side_by_side(final_result, validation_control_images[:num_frames], 'save.mp4', fps=30)
深入研究
欢迎进入我们的 github,你将获得:
- 更加详细的技术细节介绍和代码解释。
- 控制条件的提取算法细节。
- 模型推理的详细代码。
- 项目更新日志动态,更多互动机会。
- PaddleMix工具链,帮助您更好的使用模型。
引用
@article{yang2024cogvideox,
title={VCtrl: Enabling Versatile Controls for Video Diffusion Models},
year={2025}
}