PabloTa's picture
Upload PPO LunarLander-v2 trained agent
ee57fa1
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x0000020518BE7C10>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000020518BE7CA0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000020518BE7D30>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000020518BE7DC0>",
"_build": "<function ActorCriticPolicy._build at 0x0000020518BE7E50>",
"forward": "<function ActorCriticPolicy.forward at 0x0000020518BE7EE0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000020518BE7F70>",
"_predict": "<function ActorCriticPolicy._predict at 0x0000020518BE8040>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000020518BE80D0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000020518BE8160>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x0000020518BE81F0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x0000020518BE5540>"
},
"verbose": 1,
"policy_kwargs": {
"net_arch": [
{
"pi": [
254,
128,
64,
64,
64,
64,
64,
64
],
"vf": [
254,
128,
64,
64,
64,
64,
64,
64
]
}
]
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 2007808,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1671545468124259100,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOY0eT0fZde5YoKCOsqPkzUdDxq7k7mWuQAAgD8AAIA/84zCPSEc4T29mPG9oeHMvqDtoLxG05U9AAAAAAAAAADNsuy8blCBPljSdz7LCdu+d7dnPiz+Nz4AAAAAAAAAAJpM1b0YjmM/DY6OvXNo/r61i16++7fKOwAAAAAAAAAA8m23vu9uAz8GSRC+wJIPvzF25r6ouhq8AAAAAAAAAADNxDs7aUVOPW4KKr7JN0u+GqfxPFLkIb4AAAAAAAAAAPONoz2pYCe8/rWGvjm/jr4ra3y9ahq3PwAAgD8AAAAALdKFvsfRXD9hGZG+LnnCvuHCyb6mH969AAAAAAAAAAAzeRI8aStOvEnvkb39Sak74raCPQ5SuD0AAIA/AACAP/PIQL5P63C8jbjTu12wFbrF/d49EFbxOgAAgD8AAIA/mnBJvQVI17t2v0q8jo4mvYBAC71AVNQ9AACAPwAAAADNYKw8fuO2P5bnZj4+2ZW8JKb5ObIIDD0AAAAAAAAAAABeUb3sX4q7FcNzvdEKjTzch/i8o1FwPQAAgD8AAIA/GpQIvVHv3T09y1I9eiGbviotDT7k5z89AAAAAAAAAACaefs7czquP96j7z1m3NC+z7tyPBiDwT0AAAAAAAAAAJqUqzxIi8u6tiFbvZv1lDyxcaq7kbSAPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0039039999999999075,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg6eQKzUYckCUhpRSlIwBbJRL6owBdJRHQLAyHULlV951fZQoaAZoCWgPQwjpD808uVNyQJSGlFKUaBVL+GgWR0CwMiSvgWJrdX2UKGgGaAloD0MIggAZOvY9ckCUhpRSlGgVS9xoFkdAsDItY8uBc3V9lChoBmgJaA9DCIoe+BjspHBAlIaUUpRoFUvmaBZHQLAyL/MGHHp1fZQoaAZoCWgPQwjqsMItn/ZxQJSGlFKUaBVL12gWR0CwMjURradudX2UKGgGaAloD0MIih74GKyub0CUhpRSlGgVS+hoFkdAsDI9ATqSo3V9lChoBmgJaA9DCDl7Z7RV4XFAlIaUUpRoFUvlaBZHQLAyQVtXPqt1fZQoaAZoCWgPQwirPldbMfFwQJSGlFKUaBVL6WgWR0CwMkHenAIqdX2UKGgGaAloD0MIxR7ax8qlckCUhpRSlGgVS/NoFkdAsDJL2oNutXV9lChoBmgJaA9DCAzqW+a0+HFAlIaUUpRoFUvDaBZHQLAyULeQ+2V1fZQoaAZoCWgPQwjfjJqv0jBxQJSGlFKUaBVL0GgWR0CwMmhFAmiQdX2UKGgGaAloD0MIFf2hmaeTcUCUhpRSlGgVS8hoFkdAsDJ/Ty8SPHV9lChoBmgJaA9DCAk1Q6ooy3FAlIaUUpRoFUvXaBZHQLAykLehwl11fZQoaAZoCWgPQwgQWg9fprFsQJSGlFKUaBVL8GgWR0CwMpF8LKFJdX2UKGgGaAloD0MINWCQ9KlgckCUhpRSlGgVS/ZoFkdAsDKgE7nxKHV9lChoBmgJaA9DCP94r1qZ8BBAlIaUUpRoFUt+aBZHQLAypv1UVBV1fZQoaAZoCWgPQwjAIOnTKpxwQJSGlFKUaBVNEAFoFkdAsDK1Ec81XXV9lChoBmgJaA9DCO3UXG7w4XBAlIaUUpRoFUvyaBZHQLAyxTJQtSR1fZQoaAZoCWgPQwhR+dfyyjVzQJSGlFKUaBVL4GgWR0CwMs5pztCzdX2UKGgGaAloD0MI04TtJ2N+bUCUhpRSlGgVS9VoFkdAsDLQNG3F1nV9lChoBmgJaA9DCCpwsg3c829AlIaUUpRoFUvvaBZHQLAy00cOskp1fZQoaAZoCWgPQwgtlbcj3FpwQJSGlFKUaBVL4WgWR0CwMt5JGvwFdX2UKGgGaAloD0MIH6LRHUS4ckCUhpRSlGgVTQ0BaBZHQLAy4FVktmN1fZQoaAZoCWgPQwjx1vm3y2NxQJSGlFKUaBVL2mgWR0CwMuY4p+c6dX2UKGgGaAloD0MIsVHWbya6RkCUhpRSlGgVS41oFkdAsDL3X2/SIHV9lChoBmgJaA9DCFGIgENopXBAlIaUUpRoFU0oAWgWR0CwMvv7JnxsdX2UKGgGaAloD0MIZttpa0SIRECUhpRSlGgVS6loFkdAsDMKUUwi7nV9lChoBmgJaA9DCLZKsDicY0BAlIaUUpRoFUubaBZHQLAzDuzQeFN1fZQoaAZoCWgPQwhnmUUoNgxxQJSGlFKUaBVL72gWR0CwMxOIl+mWdX2UKGgGaAloD0MIPWL03MIybkCUhpRSlGgVTUMBaBZHQLAzH5CngpB1fZQoaAZoCWgPQwj0qWOVkhBxQJSGlFKUaBVNIAFoFkdAsDNLV3EAHXV9lChoBmgJaA9DCGDmO/hJHHJAlIaUUpRoFUvIaBZHQLAzUDR+jM51fZQoaAZoCWgPQwj/XDRkfBVyQJSGlFKUaBVL+GgWR0CwM1ceCCjDdX2UKGgGaAloD0MIYi8UsN2sckCUhpRSlGgVS/toFkdAsDNm/TLGJnV9lChoBmgJaA9DCBsqxvnbR3JAlIaUUpRoFUvlaBZHQLAzbihFmWd1fZQoaAZoCWgPQwja5zHKs7xxQJSGlFKUaBVL5mgWR0CwM3A0bcXWdX2UKGgGaAloD0MI/Wt55fqcbkCUhpRSlGgVS+BoFkdAsDN6MGX5WXV9lChoBmgJaA9DCMZrXtVZKXFAlIaUUpRoFUvoaBZHQLAziQl8gIR1fZQoaAZoCWgPQwjZsnxdxmhxQJSGlFKUaBVL3GgWR0CwM5QLeANHdX2UKGgGaAloD0MI8iiV8ISURUCUhpRSlGgVS7BoFkdAsDOglsxfwHV9lChoBmgJaA9DCBX+DG9WtXFAlIaUUpRoFU0PAWgWR0CwM6FbaAWjdX2UKGgGaAloD0MII2sNpXYFckCUhpRSlGgVS/JoFkdAsDOrV2A5JnV9lChoBmgJaA9DCIJV9fI7gHBAlIaUUpRoFU0zAWgWR0CwM69v863idX2UKGgGaAloD0MIOzQsRp0ocECUhpRSlGgVS+RoFkdAsDOxOsT37HV9lChoBmgJaA9DCAlszsHzXnBAlIaUUpRoFUvoaBZHQLAzvULlV951fZQoaAZoCWgPQwhxyXGndAhMQJSGlFKUaBVLrWgWR0CwM9ehGpdbdX2UKGgGaAloD0MIoPzdO2pM87+UhpRSlGgVS5loFkdAsDPZ7u2JBXV9lChoBmgJaA9DCIwTX+3of3FAlIaUUpRoFUvpaBZHQLAz+CQ9zOp1fZQoaAZoCWgPQwj2CgvuB4NxQJSGlFKUaBVL7mgWR0CwNACWzF/AdX2UKGgGaAloD0MI91rQe2OYH0CUhpRSlGgVS4RoFkdAsDQBnPE873V9lChoBmgJaA9DCGTpQxdU7XFAlIaUUpRoFU1aAWgWR0CwNArUXpGGdX2UKGgGaAloD0MIxmzJqkjScECUhpRSlGgVS+ZoFkdAsDQaMFUyYXV9lChoBmgJaA9DCHwsfegC3W9AlIaUUpRoFUvcaBZHQLA0HQFLWZt1fZQoaAZoCWgPQwh07KASl9NxQJSGlFKUaBVL9WgWR0CwNCJhfBvadX2UKGgGaAloD0MIovDZOrjxb0CUhpRSlGgVS9hoFkdAsDQmeiBXjnV9lChoBmgJaA9DCL6kMVpHE0dAlIaUUpRoFUupaBZHQLA0M8n/kvN1fZQoaAZoCWgPQwgvwhTlErFyQJSGlFKUaBVL8WgWR0CwNEHeizsydX2UKGgGaAloD0MIk6tY/GbOcECUhpRSlGgVS9toFkdAsDRKD8LronV9lChoBmgJaA9DCM76lGPyF3JAlIaUUpRoFUvwaBZHQLA0TJ8OTaF1fZQoaAZoCWgPQwhBuW3fo2dwQJSGlFKUaBVL6mgWR0CwNFB2KVIJdX2UKGgGaAloD0MIZ5sb01N8cECUhpRSlGgVS/FoFkdAsDRY6NlyzXV9lChoBmgJaA9DCHrHKTqS70BAlIaUUpRoFUugaBZHQLA0Y2fTTfB1fZQoaAZoCWgPQwjlfRzNkfEwQJSGlFKUaBVLm2gWR0CwNGc+zMRpdX2UKGgGaAloD0MIqIqp9FNIcUCUhpRSlGgVS9poFkdAsDRsXXRPXXV9lChoBmgJaA9DCFfMCG+P2nFAlIaUUpRoFU0HAWgWR0CwNIc+zMRpdX2UKGgGaAloD0MIJLVQMrlrcUCUhpRSlGgVS9FoFkdAsDSrFdcB2nV9lChoBmgJaA9DCKbydoTTAuw/lIaUUpRoFUuAaBZHQLA0rF2V3Ux1fZQoaAZoCWgPQwj8GkmC8DdyQJSGlFKUaBVNBgFoFkdAsDSvsWweNnV9lChoBmgJaA9DCJ9W0R8ae3BAlIaUUpRoFUvZaBZHQLA0tdZq20B1fZQoaAZoCWgPQwjo2az6XK9yQJSGlFKUaBVL/GgWR0CwNMEZzgdfdX2UKGgGaAloD0MI0lW6u86GSECUhpRSlGgVS7RoFkdAsDTG/TLGJnV9lChoBmgJaA9DCAx3Loz0LHJAlIaUUpRoFU0AAWgWR0CwNMb9MsYmdX2UKGgGaAloD0MInYTSF0JPb0CUhpRSlGgVS89oFkdAsDTTRu0kW3V9lChoBmgJaA9DCN7lIr5TlXFAlIaUUpRoFUvyaBZHQLA01pr1uix1fZQoaAZoCWgPQwgSFhVxOr1zQJSGlFKUaBVL+2gWR0CwNOiGahHtdX2UKGgGaAloD0MIUIvBwzRQcUCUhpRSlGgVS/RoFkdAsDTu7PIGQnV9lChoBmgJaA9DCFtEFJP3yHBAlIaUUpRoFUvaaBZHQLA0/Dyvs7d1fZQoaAZoCWgPQwjxaOOIteNuQJSGlFKUaBVL6GgWR0CwNQGdEsredX2UKGgGaAloD0MINXo1QClUcUCUhpRSlGgVS91oFkdAsDUELE1l5HV9lChoBmgJaA9DCKoqNBDLBhhAlIaUUpRoFUuEaBZHQLA1Bz7di2F1fZQoaAZoCWgPQwg8g4b+icdvQJSGlFKUaBVLzGgWR0CwNTfikwevdX2UKGgGaAloD0MIqiwKu6ixckCUhpRSlGgVTQoBaBZHQLA1QVtoBaN1fZQoaAZoCWgPQwgcCTTYFJdwQJSGlFKUaBVL7WgWR0CwNVgkHD77dX2UKGgGaAloD0MIT+W0p2SlcECUhpRSlGgVS9poFkdAsDVjJiiItXV9lChoBmgJaA9DCOF86lglsXJAlIaUUpRoFUvnaBZHQLA1Zz67/XJ1fZQoaAZoCWgPQwjCFrt91sNvQJSGlFKUaBVNBQFoFkdAsDVyQOnVG3V9lChoBmgJaA9DCDnSGRh5U0BAlIaUUpRoFUuVaBZHQLA1c0b961N1fZQoaAZoCWgPQwjirl5FhpNxQJSGlFKUaBVL5WgWR0CwNXw8wHqvdX2UKGgGaAloD0MI/vLJiuG+QkCUhpRSlGgVS6xoFkdAsDWA2Hck+3V9lChoBmgJaA9DCHctIR+0mHFAlIaUUpRoFUv1aBZHQLA1hG34Kx91fZQoaAZoCWgPQwjsvmN47NtyQJSGlFKUaBVNEAFoFkdAsDWKksSTQnV9lChoBmgJaA9DCADEXb0KnnBAlIaUUpRoFUvpaBZHQLA1lll9Sdh1fZQoaAZoCWgPQwjaVrPOOFZyQJSGlFKUaBVLzWgWR0CwNZu5vtMPdX2UKGgGaAloD0MIGVjH8QPpcUCUhpRSlGgVS/xoFkdAsDWcv8IiT3V9lChoBmgJaA9DCA1Uxr/PlXBAlIaUUpRoFUvsaBZHQLA1o6k69011fZQoaAZoCWgPQwjTLqaZ7vlNQJSGlFKUaBVLrGgWR0CwNcnOGCZndX2UKGgGaAloD0MIVyJQ/YM8cUCUhpRSlGgVS+FoFkdAsDXcv+OwPnV9lChoBmgJaA9DCEKZRpMLrW1AlIaUUpRoFUvyaBZHQLA14JbMX8B1fZQoaAZoCWgPQwiy9KEL6oczwJSGlFKUaBVLiWgWR0CwNfXWattAdX2UKGgGaAloD0MIXOffLjtDcUCUhpRSlGgVS95oFkdAsDX4ZccENnVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 620,
"n_steps": 4048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.005,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 20,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}