Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LL-test-4.zip +3 -0
- ppo-LL-test-4/_stable_baselines3_version +1 -0
- ppo-LL-test-4/data +119 -0
- ppo-LL-test-4/policy.optimizer.pth +3 -0
- ppo-LL-test-4/policy.pth +3 -0
- ppo-LL-test-4/pytorch_variables.pth +3 -0
- ppo-LL-test-4/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 273.26 +/- 16.63
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001E742547C10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001E742547CA0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001E742547D30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001E742547DC0>", "_build": "<function ActorCriticPolicy._build at 0x000001E742547E50>", "forward": "<function ActorCriticPolicy.forward at 0x000001E742547EE0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001E742547F70>", "_predict": "<function ActorCriticPolicy._predict at 0x000001E742549040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001E7425490D0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001E742549160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001E7425491F0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001E742545340>"}, "verbose": 1, "policy_kwargs": {"net_arch": [{"pi": [254, 128, 64], "vf": [254, 128, 64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2007808, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671539479431718900, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMjgrp7OIm6cNlRuZp8hzIT2/i6bddvOAAAgD8AAIA/mkzlPCl0M7r6nTE74+vmNqXbAjtRW0y6AACAPwAAgD8A0hm8j4I5usZ2Tjq6Y5W12/GZO05ocrkAAIA/AACAPzOJXjyP1mm6GounO0ffoziIHto5vcfouAAAgD8AAIA/mt0hvFxzdLpVeN26Mx6MtBY17bko8v05AACAPwAAgD8AEH4715M5uU34BLfexKWwsCcPvIFqIDYAAIA/AACAPzND0btI8Ya63VRROxdSArbHti+7NqlzugAAgD8AAIA/mrlAO49yN7ra1zM8GVHMNUSQpruCNM00AACAPwAAgD8zR/W7FMCMuhRluzwy77i1JzWHuVrSq7QAAIA/AACAPzP/k7vDIU26RjgsuG32J7MmUg86ZVVLNwAAgD8AAIA/MwWOvIVr9LnzUSW6LycwNg14w7tAoEE5AACAPwAAgD/N5NY74RyMuv3p87vOnZm2Vjueuu3lCjYAAIA/AACAP5plvbyP/m66TIAZO8ANybUqN+S6OqMwugAAgD8AAIA/M4edu66blro9sHM736AjOOmiEjtapiK6AACAPwAAgD+aNK+8SLOUuilah7rKgZa1ajrAOoFMnDkAAIA/AACAP82iHD0pzGu6fTe8O/ML5Tc0fIK7cCbdNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0039039999999999075, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIk6gXfJoeaECUhpRSlIwBbJRN6AOMAXSUR0CgpE8tf5UMdX2UKGgGaAloD0MIEr2MYrn/QECUhpRSlGgVS3JoFkdAoKSWWQfZEnV9lChoBmgJaA9DCHl1jgHZ0mlAlIaUUpRoFU3oA2gWR0CgpZ8M3IdVdX2UKGgGaAloD0MI6fNRRtznaECUhpRSlGgVTegDaBZHQKClqlBQemx1fZQoaAZoCWgPQwheu7ThsKBAQJSGlFKUaBVLh2gWR0CgpwVzQu27dX2UKGgGaAloD0MITU7tDNPpZkCUhpRSlGgVTegDaBZHQKCoN6AvtdB1fZQoaAZoCWgPQwg7VFOSdRRiQJSGlFKUaBVN6ANoFkdAoKhB3eN1hnV9lChoBmgJaA9DCOjB3Vm72WlAlIaUUpRoFU3oA2gWR0CgqE8tXgccdX2UKGgGaAloD0MIns4VpQQHaUCUhpRSlGgVTegDaBZHQKCoguPFNtZ1fZQoaAZoCWgPQwiB0eXNYXdlQJSGlFKUaBVN6ANoFkdAoKpw+EAYHnV9lChoBmgJaA9DCPYNTG5Uq3FAlIaUUpRoFU0qAWgWR0Cgq5AzxgAqdX2UKGgGaAloD0MIzo5U33mcY0CUhpRSlGgVTegDaBZHQKCrltuUD+11fZQoaAZoCWgPQwiLwi6KnidmQJSGlFKUaBVN6ANoFkdAoK01k+X7cnV9lChoBmgJaA9DCG399J+1x2NAlIaUUpRoFU3oA2gWR0CgrUBUrCm/dX2UKGgGaAloD0MIUcB2MGK6aUCUhpRSlGgVTegDaBZHQKCtprrxAjZ1fZQoaAZoCWgPQwgtmWN512RkQJSGlFKUaBVN6ANoFkdAoK4Z7iQ1aXV9lChoBmgJaA9DCIuqX+n8i2VAlIaUUpRoFU3oA2gWR0Cgrs2kadc0dX2UKGgGaAloD0MI18OXiSJzakCUhpRSlGgVTegDaBZHQKCu1VI7Njd1fZQoaAZoCWgPQwitodReRCdkQJSGlFKUaBVN6ANoFkdAoK71ELH+63V9lChoBmgJaA9DCIY6rHBL1mdAlIaUUpRoFU3oA2gWR0CgrzWUB4lhdX2UKGgGaAloD0MIDRtl/eboY0CUhpRSlGgVTegDaBZHQKCwMHVPN3Z1fZQoaAZoCWgPQwhwC5bqAv1nQJSGlFKUaBVN6ANoFkdAoLGPsJIDo3V9lChoBmgJaA9DCMb3xaUqvWVAlIaUUpRoFU3oA2gWR0Cgst2Dg62fdX2UKGgGaAloD0MIAkcCDTbnZkCUhpRSlGgVTegDaBZHQKCy5rqt5lh1fZQoaAZoCWgPQwitS43Qz1llQJSGlFKUaBVN6ANoFkdAoLMmN3np0XV9lChoBmgJaA9DCLOY2HxcK3FAlIaUUpRoFU09AmgWR0CgsyvZh8YydX2UKGgGaAloD0MIqySyD7KYY0CUhpRSlGgVTegDaBZHQKC1BnlGPPt1fZQoaAZoCWgPQwjWxtgJL25oQJSGlFKUaBVN6ANoFkdAoLYt5dGAkXV9lChoBmgJaA9DCJyIfm39W2RAlIaUUpRoFU3oA2gWR0CgtjYW+GoKdX2UKGgGaAloD0MI5iMp6eHraECUhpRSlGgVTegDaBZHQKC323dbgTB1fZQoaAZoCWgPQwgkQiPYOP1qQJSGlFKUaBVN6ANoFkdAoP4q06YE4nV9lChoBmgJaA9DCOLIA5HFQmhAlIaUUpRoFU3oA2gWR0Cg/qEZBLPEdX2UKGgGaAloD0MICK9d2nAHaUCUhpRSlGgVTegDaBZHQKD/ULb5/LF1fZQoaAZoCWgPQwiSzyue+jRoQJSGlFKUaBVN6ANoFkdAoP9YZKnNxHV9lChoBmgJaA9DCECk374OI2JAlIaUUpRoFU3oA2gWR0Cg/3cdHUc5dX2UKGgGaAloD0MIhA8lWvILY0CUhpRSlGgVTegDaBZHQKD/tpoK2KF1fZQoaAZoCWgPQwiD+pY5Xa1oQJSGlFKUaBVN6ANoFkdAoQCiohpxm3V9lChoBmgJaA9DCAthNZawMkhAlIaUUpRoFUt0aBZHQKEAsf5k9U11fZQoaAZoCWgPQwhqMXiYdlJlQJSGlFKUaBVN6ANoFkdAoQHhm/WUbHV9lChoBmgJaA9DCE34pX7e7WZAlIaUUpRoFU3oA2gWR0ChAvqyv9tNdX2UKGgGaAloD0MI5DEDlfHkakCUhpRSlGgVTegDaBZHQKEDA2a2F391fZQoaAZoCWgPQwhxqUpb3FlmQJSGlFKUaBVN6ANoFkdAoQM9Qfp2U3V9lChoBmgJaA9DCBjrG5hcQ2hAlIaUUpRoFU3oA2gWR0ChA0LjxTbWdX2UKGgGaAloD0MIMunvpfC+ZkCUhpRSlGgVTegDaBZHQKEE5K6nR9h1fZQoaAZoCWgPQwjC2a1lshtmQJSGlFKUaBVN6ANoFkdAoQXlMXaakXV9lChoBmgJaA9DCNVeRNuxEGRAlIaUUpRoFU3oA2gWR0ChBevZqVQidX2UKGgGaAloD0MIptO6DepHZUCUhpRSlGgVTegDaBZHQKEHZTGYKIB1fZQoaAZoCWgPQwiKPbSPFThmQJSGlFKUaBVN6ANoFkdAoQfZavA443V9lChoBmgJaA9DCGL3HcNjLmhAlIaUUpRoFU3oA2gWR0ChCE+wcHW0dX2UKGgGaAloD0MIAOFDiZbMOUCUhpRSlGgVS35oFkdAoQi3oA4n4XV9lChoBmgJaA9DCPKU1XQ9H2pAlIaUUpRoFU3oA2gWR0ChCRZYoy9FdX2UKGgGaAloD0MI/OB86tgyZ0CUhpRSlGgVTegDaBZHQKEJHwzch1V1fZQoaAZoCWgPQwgZVvFGZgZlQJSGlFKUaBVN6ANoFkdAoQlDZtelbnV9lChoBmgJaA9DCE26LZGLQGFAlIaUUpRoFU3oA2gWR0ChCpv6j323dX2UKGgGaAloD0MIWKoLeBngZ0CUhpRSlGgVTegDaBZHQKEKrWLgn+h1fZQoaAZoCWgPQwig4c0avNc5QJSGlFKUaBVLdGgWR0ChC8sVDa4+dX2UKGgGaAloD0MImntI+F7zZUCUhpRSlGgVTegDaBZHQKEL8XtShrZ1fZQoaAZoCWgPQwinlNdK6JhgQJSGlFKUaBVN6ANoFkdAoQ0Kkfs/p3V9lChoBmgJaA9DCDOLUGwF8GZAlIaUUpRoFU3oA2gWR0ChDRLDIikgdX2UKGgGaAloD0MIrz+Jzx2QakCUhpRSlGgVTegDaBZHQKENSYuTRpl1fZQoaAZoCWgPQwgZV1wcFS1mQJSGlFKUaBVN6ANoFkdAoQ1OJ3xFzHV9lChoBmgJaA9DCDi9i/fjtmJAlIaUUpRoFU3oA2gWR0ChDu3lr/KhdX2UKGgGaAloD0MIOUVHcnkdaECUhpRSlGgVTegDaBZHQKEP/L7oB7x1fZQoaAZoCWgPQwgnLscrEAdjQJSGlFKUaBVN6ANoFkdAoRAC46Oo53V9lChoBmgJaA9DCKD83TvqemlAlIaUUpRoFU3oA2gWR0ChEfUQ9RrKdX2UKGgGaAloD0MI0VeQZiw0Z0CUhpRSlGgVTegDaBZHQKESbWMCLdh1fZQoaAZoCWgPQwiUaMnjabJlQJSGlFKUaBVN6ANoFkdAoRLSwwCbMHV9lChoBmgJaA9DCJF8JZASjGZAlIaUUpRoFU3oA2gWR0ChEyUxubZwdX2UKGgGaAloD0MIsRU0LTFHZECUhpRSlGgVTegDaBZHQKETLFyaNMp1fZQoaAZoCWgPQwi3Qe23duI8QJSGlFKUaBVLgmgWR0ChE0d/axoqdX2UKGgGaAloD0MIMuTYegaZZ0CUhpRSlGgVTegDaBZHQKETTSFXaJ11fZQoaAZoCWgPQwg9Kv7vCE1mQJSGlFKUaBVN6ANoFkdAoRStYuCf6HV9lChoBmgJaA9DCAA5YcJoaWdAlIaUUpRoFU3oA2gWR0ChFdZYYBNmdX2UKGgGaAloD0MI7pOjAFGpZUCUhpRSlGgVTegDaBZHQKEWAFRHf/F1fZQoaAZoCWgPQwhwQ4zXvPBkQJSGlFKUaBVN6ANoFkdAoRcjJW/8EXV9lChoBmgJaA9DCO/+eK9aTmVAlIaUUpRoFU3oA2gWR0ChFyvZqVQidX2UKGgGaAloD0MIeawZGeSGZ0CUhpRSlGgVTegDaBZHQKEXZz4DcM51fZQoaAZoCWgPQwiqukc2V9ppQJSGlFKUaBVN6ANoFkdAoRdsXLvCuXV9lChoBmgJaA9DCLL0oQtqDWNAlIaUUpRoFU3oA2gWR0ChGSSuZCv6dX2UKGgGaAloD0MIu0ihLHz1ZkCUhpRSlGgVTegDaBZHQKEaSpIczZZ1fZQoaAZoCWgPQwiJfJdSF7BkQJSGlFKUaBVN6ANoFkdAoRpROafBe3V9lChoBmgJaA9DCJyJ6UKsRVFAlIaUUpRoFUuOaBZHQKEaw2bXpW51fZQoaAZoCWgPQwhGelG73wtnQJSGlFKUaBVN6ANoFkdAoR0V1W8yvnV9lChoBmgJaA9DCDz2s1iKbGlAlIaUUpRoFU3oA2gWR0ChHZ6JhvzfdX2UKGgGaAloD0MIucMmMvN7YUCUhpRSlGgVTegDaBZHQKEd/cUM5Ot1fZQoaAZoCWgPQwj7dhIRfrZmQJSGlFKUaBVN6ANoFkdAoR4GeUY8+3V9lChoBmgJaA9DCAithy+TL2hAlIaUUpRoFU3oA2gWR0ChHiUxubZwdX2UKGgGaAloD0MI4gM7/osOZUCUhpRSlGgVTegDaBZHQKEeK1aW5Yp1fZQoaAZoCWgPQwglICbhwgNoQJSGlFKUaBVN6ANoFkdAoR+DZtelbnV9lChoBmgJaA9DCOiIfJdSfFNAlIaUUpRoFUuraBZHQKEfwmCROlB1fZQoaAZoCWgPQwih9ls7UUZiQJSGlFKUaBVN6ANoFkdAoSCoxvegtnV9lChoBmgJaA9DCDs2AvE6TWZAlIaUUpRoFU3oA2gWR0ChIM8tXgccdX2UKGgGaAloD0MI0clS6/04SECUhpRSlGgVS2xoFkdAoSHNIRRMvnV9lChoBmgJaA9DCMBC5sog72RAlIaUUpRoFU3oA2gWR0ChIec94eLfdX2UKGgGaAloD0MIPZzAdNrOZECUhpRSlGgVTegDaBZHQKEh7uv2XcB1fZQoaAZoCWgPQwhhbYyd8MZgQJSGlFKUaBVN6ANoFkdAoSIltKqXGHV9lChoBmgJaA9DCN1dZ0N+PmVAlIaUUpRoFU3oA2gWR0ChIipQk5ZKdX2UKGgGaAloD0MIl8YvvBKeZkCUhpRSlGgVTegDaBZHQKEk5CtzS1F1fZQoaAZoCWgPQwjElbN3Rt5jQJSGlFKUaBVN6ANoFkdAoSTr2YfGMnV9lChoBmgJaA9DCJeL+E5ME2VAlIaUUpRoFU3oA2gWR0ChJWMlTm4idWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 4048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.9.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cpu", "GPU Enabled": "False", "Numpy": "1.24.0", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000020518BE7C10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000020518BE7CA0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000020518BE7D30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000020518BE7DC0>", "_build": "<function ActorCriticPolicy._build at 0x0000020518BE7E50>", "forward": "<function ActorCriticPolicy.forward at 0x0000020518BE7EE0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000020518BE7F70>", "_predict": "<function ActorCriticPolicy._predict at 0x0000020518BE8040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000020518BE80D0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000020518BE8160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000020518BE81F0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000020518BE5540>"}, "verbose": 1, "policy_kwargs": {"net_arch": [{"pi": [254, 128, 64, 64, 64, 64, 64, 64], "vf": [254, 128, 64, 64, 64, 64, 64, 64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2007808, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671545468124259100, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOY0eT0fZde5YoKCOsqPkzUdDxq7k7mWuQAAgD8AAIA/84zCPSEc4T29mPG9oeHMvqDtoLxG05U9AAAAAAAAAADNsuy8blCBPljSdz7LCdu+d7dnPiz+Nz4AAAAAAAAAAJpM1b0YjmM/DY6OvXNo/r61i16++7fKOwAAAAAAAAAA8m23vu9uAz8GSRC+wJIPvzF25r6ouhq8AAAAAAAAAADNxDs7aUVOPW4KKr7JN0u+GqfxPFLkIb4AAAAAAAAAAPONoz2pYCe8/rWGvjm/jr4ra3y9ahq3PwAAgD8AAAAALdKFvsfRXD9hGZG+LnnCvuHCyb6mH969AAAAAAAAAAAzeRI8aStOvEnvkb39Sak74raCPQ5SuD0AAIA/AACAP/PIQL5P63C8jbjTu12wFbrF/d49EFbxOgAAgD8AAIA/mnBJvQVI17t2v0q8jo4mvYBAC71AVNQ9AACAPwAAAADNYKw8fuO2P5bnZj4+2ZW8JKb5ObIIDD0AAAAAAAAAAABeUb3sX4q7FcNzvdEKjTzch/i8o1FwPQAAgD8AAIA/GpQIvVHv3T09y1I9eiGbviotDT7k5z89AAAAAAAAAACaefs7czquP96j7z1m3NC+z7tyPBiDwT0AAAAAAAAAAJqUqzxIi8u6tiFbvZv1lDyxcaq7kbSAPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0039039999999999075, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg6eQKzUYckCUhpRSlIwBbJRL6owBdJRHQLAyHULlV951fZQoaAZoCWgPQwjpD808uVNyQJSGlFKUaBVL+GgWR0CwMiSvgWJrdX2UKGgGaAloD0MIggAZOvY9ckCUhpRSlGgVS9xoFkdAsDItY8uBc3V9lChoBmgJaA9DCIoe+BjspHBAlIaUUpRoFUvmaBZHQLAyL/MGHHp1fZQoaAZoCWgPQwjqsMItn/ZxQJSGlFKUaBVL12gWR0CwMjURradudX2UKGgGaAloD0MIih74GKyub0CUhpRSlGgVS+hoFkdAsDI9ATqSo3V9lChoBmgJaA9DCDl7Z7RV4XFAlIaUUpRoFUvlaBZHQLAyQVtXPqt1fZQoaAZoCWgPQwirPldbMfFwQJSGlFKUaBVL6WgWR0CwMkHenAIqdX2UKGgGaAloD0MIxR7ax8qlckCUhpRSlGgVS/NoFkdAsDJL2oNutXV9lChoBmgJaA9DCAzqW+a0+HFAlIaUUpRoFUvDaBZHQLAyULeQ+2V1fZQoaAZoCWgPQwjfjJqv0jBxQJSGlFKUaBVL0GgWR0CwMmhFAmiQdX2UKGgGaAloD0MIFf2hmaeTcUCUhpRSlGgVS8hoFkdAsDJ/Ty8SPHV9lChoBmgJaA9DCAk1Q6ooy3FAlIaUUpRoFUvXaBZHQLAykLehwl11fZQoaAZoCWgPQwgQWg9fprFsQJSGlFKUaBVL8GgWR0CwMpF8LKFJdX2UKGgGaAloD0MINWCQ9KlgckCUhpRSlGgVS/ZoFkdAsDKgE7nxKHV9lChoBmgJaA9DCP94r1qZ8BBAlIaUUpRoFUt+aBZHQLAypv1UVBV1fZQoaAZoCWgPQwjAIOnTKpxwQJSGlFKUaBVNEAFoFkdAsDK1Ec81XXV9lChoBmgJaA9DCO3UXG7w4XBAlIaUUpRoFUvyaBZHQLAyxTJQtSR1fZQoaAZoCWgPQwhR+dfyyjVzQJSGlFKUaBVL4GgWR0CwMs5pztCzdX2UKGgGaAloD0MI04TtJ2N+bUCUhpRSlGgVS9VoFkdAsDLQNG3F1nV9lChoBmgJaA9DCCpwsg3c829AlIaUUpRoFUvvaBZHQLAy00cOskp1fZQoaAZoCWgPQwgtlbcj3FpwQJSGlFKUaBVL4WgWR0CwMt5JGvwFdX2UKGgGaAloD0MIH6LRHUS4ckCUhpRSlGgVTQ0BaBZHQLAy4FVktmN1fZQoaAZoCWgPQwjx1vm3y2NxQJSGlFKUaBVL2mgWR0CwMuY4p+c6dX2UKGgGaAloD0MIsVHWbya6RkCUhpRSlGgVS41oFkdAsDL3X2/SIHV9lChoBmgJaA9DCFGIgENopXBAlIaUUpRoFU0oAWgWR0CwMvv7JnxsdX2UKGgGaAloD0MIZttpa0SIRECUhpRSlGgVS6loFkdAsDMKUUwi7nV9lChoBmgJaA9DCLZKsDicY0BAlIaUUpRoFUubaBZHQLAzDuzQeFN1fZQoaAZoCWgPQwhnmUUoNgxxQJSGlFKUaBVL72gWR0CwMxOIl+mWdX2UKGgGaAloD0MIPWL03MIybkCUhpRSlGgVTUMBaBZHQLAzH5CngpB1fZQoaAZoCWgPQwj0qWOVkhBxQJSGlFKUaBVNIAFoFkdAsDNLV3EAHXV9lChoBmgJaA9DCGDmO/hJHHJAlIaUUpRoFUvIaBZHQLAzUDR+jM51fZQoaAZoCWgPQwj/XDRkfBVyQJSGlFKUaBVL+GgWR0CwM1ceCCjDdX2UKGgGaAloD0MIYi8UsN2sckCUhpRSlGgVS/toFkdAsDNm/TLGJnV9lChoBmgJaA9DCBsqxvnbR3JAlIaUUpRoFUvlaBZHQLAzbihFmWd1fZQoaAZoCWgPQwja5zHKs7xxQJSGlFKUaBVL5mgWR0CwM3A0bcXWdX2UKGgGaAloD0MI/Wt55fqcbkCUhpRSlGgVS+BoFkdAsDN6MGX5WXV9lChoBmgJaA9DCMZrXtVZKXFAlIaUUpRoFUvoaBZHQLAziQl8gIR1fZQoaAZoCWgPQwjZsnxdxmhxQJSGlFKUaBVL3GgWR0CwM5QLeANHdX2UKGgGaAloD0MI8iiV8ISURUCUhpRSlGgVS7BoFkdAsDOglsxfwHV9lChoBmgJaA9DCBX+DG9WtXFAlIaUUpRoFU0PAWgWR0CwM6FbaAWjdX2UKGgGaAloD0MII2sNpXYFckCUhpRSlGgVS/JoFkdAsDOrV2A5JnV9lChoBmgJaA9DCIJV9fI7gHBAlIaUUpRoFU0zAWgWR0CwM69v863idX2UKGgGaAloD0MIOzQsRp0ocECUhpRSlGgVS+RoFkdAsDOxOsT37HV9lChoBmgJaA9DCAlszsHzXnBAlIaUUpRoFUvoaBZHQLAzvULlV951fZQoaAZoCWgPQwhxyXGndAhMQJSGlFKUaBVLrWgWR0CwM9ehGpdbdX2UKGgGaAloD0MIoPzdO2pM87+UhpRSlGgVS5loFkdAsDPZ7u2JBXV9lChoBmgJaA9DCIwTX+3of3FAlIaUUpRoFUvpaBZHQLAz+CQ9zOp1fZQoaAZoCWgPQwj2CgvuB4NxQJSGlFKUaBVL7mgWR0CwNACWzF/AdX2UKGgGaAloD0MI91rQe2OYH0CUhpRSlGgVS4RoFkdAsDQBnPE873V9lChoBmgJaA9DCGTpQxdU7XFAlIaUUpRoFU1aAWgWR0CwNArUXpGGdX2UKGgGaAloD0MIxmzJqkjScECUhpRSlGgVS+ZoFkdAsDQaMFUyYXV9lChoBmgJaA9DCHwsfegC3W9AlIaUUpRoFUvcaBZHQLA0HQFLWZt1fZQoaAZoCWgPQwh07KASl9NxQJSGlFKUaBVL9WgWR0CwNCJhfBvadX2UKGgGaAloD0MIovDZOrjxb0CUhpRSlGgVS9hoFkdAsDQmeiBXjnV9lChoBmgJaA9DCL6kMVpHE0dAlIaUUpRoFUupaBZHQLA0M8n/kvN1fZQoaAZoCWgPQwgvwhTlErFyQJSGlFKUaBVL8WgWR0CwNEHeizsydX2UKGgGaAloD0MIk6tY/GbOcECUhpRSlGgVS9toFkdAsDRKD8LronV9lChoBmgJaA9DCM76lGPyF3JAlIaUUpRoFUvwaBZHQLA0TJ8OTaF1fZQoaAZoCWgPQwhBuW3fo2dwQJSGlFKUaBVL6mgWR0CwNFB2KVIJdX2UKGgGaAloD0MIZ5sb01N8cECUhpRSlGgVS/FoFkdAsDRY6NlyzXV9lChoBmgJaA9DCHrHKTqS70BAlIaUUpRoFUugaBZHQLA0Y2fTTfB1fZQoaAZoCWgPQwjlfRzNkfEwQJSGlFKUaBVLm2gWR0CwNGc+zMRpdX2UKGgGaAloD0MIqIqp9FNIcUCUhpRSlGgVS9poFkdAsDRsXXRPXXV9lChoBmgJaA9DCFfMCG+P2nFAlIaUUpRoFU0HAWgWR0CwNIc+zMRpdX2UKGgGaAloD0MIJLVQMrlrcUCUhpRSlGgVS9FoFkdAsDSrFdcB2nV9lChoBmgJaA9DCKbydoTTAuw/lIaUUpRoFUuAaBZHQLA0rF2V3Ux1fZQoaAZoCWgPQwj8GkmC8DdyQJSGlFKUaBVNBgFoFkdAsDSvsWweNnV9lChoBmgJaA9DCJ9W0R8ae3BAlIaUUpRoFUvZaBZHQLA0tdZq20B1fZQoaAZoCWgPQwjo2az6XK9yQJSGlFKUaBVL/GgWR0CwNMEZzgdfdX2UKGgGaAloD0MI0lW6u86GSECUhpRSlGgVS7RoFkdAsDTG/TLGJnV9lChoBmgJaA9DCAx3Loz0LHJAlIaUUpRoFU0AAWgWR0CwNMb9MsYmdX2UKGgGaAloD0MInYTSF0JPb0CUhpRSlGgVS89oFkdAsDTTRu0kW3V9lChoBmgJaA9DCN7lIr5TlXFAlIaUUpRoFUvyaBZHQLA01pr1uix1fZQoaAZoCWgPQwgSFhVxOr1zQJSGlFKUaBVL+2gWR0CwNOiGahHtdX2UKGgGaAloD0MIUIvBwzRQcUCUhpRSlGgVS/RoFkdAsDTu7PIGQnV9lChoBmgJaA9DCFtEFJP3yHBAlIaUUpRoFUvaaBZHQLA0/Dyvs7d1fZQoaAZoCWgPQwjxaOOIteNuQJSGlFKUaBVL6GgWR0CwNQGdEsredX2UKGgGaAloD0MINXo1QClUcUCUhpRSlGgVS91oFkdAsDUELE1l5HV9lChoBmgJaA9DCKoqNBDLBhhAlIaUUpRoFUuEaBZHQLA1Bz7di2F1fZQoaAZoCWgPQwg8g4b+icdvQJSGlFKUaBVLzGgWR0CwNTfikwevdX2UKGgGaAloD0MIqiwKu6ixckCUhpRSlGgVTQoBaBZHQLA1QVtoBaN1fZQoaAZoCWgPQwgcCTTYFJdwQJSGlFKUaBVL7WgWR0CwNVgkHD77dX2UKGgGaAloD0MIT+W0p2SlcECUhpRSlGgVS9poFkdAsDVjJiiItXV9lChoBmgJaA9DCOF86lglsXJAlIaUUpRoFUvnaBZHQLA1Zz67/XJ1fZQoaAZoCWgPQwjCFrt91sNvQJSGlFKUaBVNBQFoFkdAsDVyQOnVG3V9lChoBmgJaA9DCDnSGRh5U0BAlIaUUpRoFUuVaBZHQLA1c0b961N1fZQoaAZoCWgPQwjirl5FhpNxQJSGlFKUaBVL5WgWR0CwNXw8wHqvdX2UKGgGaAloD0MI/vLJiuG+QkCUhpRSlGgVS6xoFkdAsDWA2Hck+3V9lChoBmgJaA9DCHctIR+0mHFAlIaUUpRoFUv1aBZHQLA1hG34Kx91fZQoaAZoCWgPQwjsvmN47NtyQJSGlFKUaBVNEAFoFkdAsDWKksSTQnV9lChoBmgJaA9DCADEXb0KnnBAlIaUUpRoFUvpaBZHQLA1lll9Sdh1fZQoaAZoCWgPQwjaVrPOOFZyQJSGlFKUaBVLzWgWR0CwNZu5vtMPdX2UKGgGaAloD0MIGVjH8QPpcUCUhpRSlGgVS/xoFkdAsDWcv8IiT3V9lChoBmgJaA9DCA1Uxr/PlXBAlIaUUpRoFUvsaBZHQLA1o6k69011fZQoaAZoCWgPQwjTLqaZ7vlNQJSGlFKUaBVLrGgWR0CwNcnOGCZndX2UKGgGaAloD0MIVyJQ/YM8cUCUhpRSlGgVS+FoFkdAsDXcv+OwPnV9lChoBmgJaA9DCEKZRpMLrW1AlIaUUpRoFUvyaBZHQLA14JbMX8B1fZQoaAZoCWgPQwiy9KEL6oczwJSGlFKUaBVLiWgWR0CwNfXWattAdX2UKGgGaAloD0MIXOffLjtDcUCUhpRSlGgVS95oFkdAsDX4ZccENnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 4048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.9.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cpu", "GPU Enabled": "False", "Numpy": "1.24.0", "Gym": "0.21.0"}}
|
ppo-LL-test-4.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3026a5904379e0fa617680f9f92d8e04cbe4d9fcc6105dd0a436a4efad37acb6
|
3 |
+
size 1595819
|
ppo-LL-test-4/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LL-test-4/data
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x0000020518BE7C10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000020518BE7CA0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000020518BE7D30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000020518BE7DC0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x0000020518BE7E50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x0000020518BE7EE0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000020518BE7F70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x0000020518BE8040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000020518BE80D0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000020518BE8160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x0000020518BE81F0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000020518BE5540>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
"net_arch": [
|
24 |
+
{
|
25 |
+
"pi": [
|
26 |
+
254,
|
27 |
+
128,
|
28 |
+
64,
|
29 |
+
64,
|
30 |
+
64,
|
31 |
+
64,
|
32 |
+
64,
|
33 |
+
64
|
34 |
+
],
|
35 |
+
"vf": [
|
36 |
+
254,
|
37 |
+
128,
|
38 |
+
64,
|
39 |
+
64,
|
40 |
+
64,
|
41 |
+
64,
|
42 |
+
64,
|
43 |
+
64
|
44 |
+
]
|
45 |
+
}
|
46 |
+
]
|
47 |
+
},
|
48 |
+
"observation_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
56 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
57 |
+
"bounded_below": "[False False False False False False False False]",
|
58 |
+
"bounded_above": "[False False False False False False False False]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"action_space": {
|
62 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
63 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
64 |
+
"n": 4,
|
65 |
+
"_shape": [],
|
66 |
+
"dtype": "int64",
|
67 |
+
"_np_random": null
|
68 |
+
},
|
69 |
+
"n_envs": 16,
|
70 |
+
"num_timesteps": 2007808,
|
71 |
+
"_total_timesteps": 2000000,
|
72 |
+
"_num_timesteps_at_start": 0,
|
73 |
+
"seed": null,
|
74 |
+
"action_noise": null,
|
75 |
+
"start_time": 1671545468124259100,
|
76 |
+
"learning_rate": 0.0003,
|
77 |
+
"tensorboard_log": null,
|
78 |
+
"lr_schedule": {
|
79 |
+
":type:": "<class 'function'>",
|
80 |
+
":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
81 |
+
},
|
82 |
+
"_last_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOY0eT0fZde5YoKCOsqPkzUdDxq7k7mWuQAAgD8AAIA/84zCPSEc4T29mPG9oeHMvqDtoLxG05U9AAAAAAAAAADNsuy8blCBPljSdz7LCdu+d7dnPiz+Nz4AAAAAAAAAAJpM1b0YjmM/DY6OvXNo/r61i16++7fKOwAAAAAAAAAA8m23vu9uAz8GSRC+wJIPvzF25r6ouhq8AAAAAAAAAADNxDs7aUVOPW4KKr7JN0u+GqfxPFLkIb4AAAAAAAAAAPONoz2pYCe8/rWGvjm/jr4ra3y9ahq3PwAAgD8AAAAALdKFvsfRXD9hGZG+LnnCvuHCyb6mH969AAAAAAAAAAAzeRI8aStOvEnvkb39Sak74raCPQ5SuD0AAIA/AACAP/PIQL5P63C8jbjTu12wFbrF/d49EFbxOgAAgD8AAIA/mnBJvQVI17t2v0q8jo4mvYBAC71AVNQ9AACAPwAAAADNYKw8fuO2P5bnZj4+2ZW8JKb5ObIIDD0AAAAAAAAAAABeUb3sX4q7FcNzvdEKjTzch/i8o1FwPQAAgD8AAIA/GpQIvVHv3T09y1I9eiGbviotDT7k5z89AAAAAAAAAACaefs7czquP96j7z1m3NC+z7tyPBiDwT0AAAAAAAAAAJqUqzxIi8u6tiFbvZv1lDyxcaq7kbSAPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
85 |
+
},
|
86 |
+
"_last_episode_starts": {
|
87 |
+
":type:": "<class 'numpy.ndarray'>",
|
88 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
89 |
+
},
|
90 |
+
"_last_original_obs": null,
|
91 |
+
"_episode_num": 0,
|
92 |
+
"use_sde": false,
|
93 |
+
"sde_sample_freq": -1,
|
94 |
+
"_current_progress_remaining": -0.0039039999999999075,
|
95 |
+
"ep_info_buffer": {
|
96 |
+
":type:": "<class 'collections.deque'>",
|
97 |
+
":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg6eQKzUYckCUhpRSlIwBbJRL6owBdJRHQLAyHULlV951fZQoaAZoCWgPQwjpD808uVNyQJSGlFKUaBVL+GgWR0CwMiSvgWJrdX2UKGgGaAloD0MIggAZOvY9ckCUhpRSlGgVS9xoFkdAsDItY8uBc3V9lChoBmgJaA9DCIoe+BjspHBAlIaUUpRoFUvmaBZHQLAyL/MGHHp1fZQoaAZoCWgPQwjqsMItn/ZxQJSGlFKUaBVL12gWR0CwMjURradudX2UKGgGaAloD0MIih74GKyub0CUhpRSlGgVS+hoFkdAsDI9ATqSo3V9lChoBmgJaA9DCDl7Z7RV4XFAlIaUUpRoFUvlaBZHQLAyQVtXPqt1fZQoaAZoCWgPQwirPldbMfFwQJSGlFKUaBVL6WgWR0CwMkHenAIqdX2UKGgGaAloD0MIxR7ax8qlckCUhpRSlGgVS/NoFkdAsDJL2oNutXV9lChoBmgJaA9DCAzqW+a0+HFAlIaUUpRoFUvDaBZHQLAyULeQ+2V1fZQoaAZoCWgPQwjfjJqv0jBxQJSGlFKUaBVL0GgWR0CwMmhFAmiQdX2UKGgGaAloD0MIFf2hmaeTcUCUhpRSlGgVS8hoFkdAsDJ/Ty8SPHV9lChoBmgJaA9DCAk1Q6ooy3FAlIaUUpRoFUvXaBZHQLAykLehwl11fZQoaAZoCWgPQwgQWg9fprFsQJSGlFKUaBVL8GgWR0CwMpF8LKFJdX2UKGgGaAloD0MINWCQ9KlgckCUhpRSlGgVS/ZoFkdAsDKgE7nxKHV9lChoBmgJaA9DCP94r1qZ8BBAlIaUUpRoFUt+aBZHQLAypv1UVBV1fZQoaAZoCWgPQwjAIOnTKpxwQJSGlFKUaBVNEAFoFkdAsDK1Ec81XXV9lChoBmgJaA9DCO3UXG7w4XBAlIaUUpRoFUvyaBZHQLAyxTJQtSR1fZQoaAZoCWgPQwhR+dfyyjVzQJSGlFKUaBVL4GgWR0CwMs5pztCzdX2UKGgGaAloD0MI04TtJ2N+bUCUhpRSlGgVS9VoFkdAsDLQNG3F1nV9lChoBmgJaA9DCCpwsg3c829AlIaUUpRoFUvvaBZHQLAy00cOskp1fZQoaAZoCWgPQwgtlbcj3FpwQJSGlFKUaBVL4WgWR0CwMt5JGvwFdX2UKGgGaAloD0MIH6LRHUS4ckCUhpRSlGgVTQ0BaBZHQLAy4FVktmN1fZQoaAZoCWgPQwjx1vm3y2NxQJSGlFKUaBVL2mgWR0CwMuY4p+c6dX2UKGgGaAloD0MIsVHWbya6RkCUhpRSlGgVS41oFkdAsDL3X2/SIHV9lChoBmgJaA9DCFGIgENopXBAlIaUUpRoFU0oAWgWR0CwMvv7JnxsdX2UKGgGaAloD0MIZttpa0SIRECUhpRSlGgVS6loFkdAsDMKUUwi7nV9lChoBmgJaA9DCLZKsDicY0BAlIaUUpRoFUubaBZHQLAzDuzQeFN1fZQoaAZoCWgPQwhnmUUoNgxxQJSGlFKUaBVL72gWR0CwMxOIl+mWdX2UKGgGaAloD0MIPWL03MIybkCUhpRSlGgVTUMBaBZHQLAzH5CngpB1fZQoaAZoCWgPQwj0qWOVkhBxQJSGlFKUaBVNIAFoFkdAsDNLV3EAHXV9lChoBmgJaA9DCGDmO/hJHHJAlIaUUpRoFUvIaBZHQLAzUDR+jM51fZQoaAZoCWgPQwj/XDRkfBVyQJSGlFKUaBVL+GgWR0CwM1ceCCjDdX2UKGgGaAloD0MIYi8UsN2sckCUhpRSlGgVS/toFkdAsDNm/TLGJnV9lChoBmgJaA9DCBsqxvnbR3JAlIaUUpRoFUvlaBZHQLAzbihFmWd1fZQoaAZoCWgPQwja5zHKs7xxQJSGlFKUaBVL5mgWR0CwM3A0bcXWdX2UKGgGaAloD0MI/Wt55fqcbkCUhpRSlGgVS+BoFkdAsDN6MGX5WXV9lChoBmgJaA9DCMZrXtVZKXFAlIaUUpRoFUvoaBZHQLAziQl8gIR1fZQoaAZoCWgPQwjZsnxdxmhxQJSGlFKUaBVL3GgWR0CwM5QLeANHdX2UKGgGaAloD0MI8iiV8ISURUCUhpRSlGgVS7BoFkdAsDOglsxfwHV9lChoBmgJaA9DCBX+DG9WtXFAlIaUUpRoFU0PAWgWR0CwM6FbaAWjdX2UKGgGaAloD0MII2sNpXYFckCUhpRSlGgVS/JoFkdAsDOrV2A5JnV9lChoBmgJaA9DCIJV9fI7gHBAlIaUUpRoFU0zAWgWR0CwM69v863idX2UKGgGaAloD0MIOzQsRp0ocECUhpRSlGgVS+RoFkdAsDOxOsT37HV9lChoBmgJaA9DCAlszsHzXnBAlIaUUpRoFUvoaBZHQLAzvULlV951fZQoaAZoCWgPQwhxyXGndAhMQJSGlFKUaBVLrWgWR0CwM9ehGpdbdX2UKGgGaAloD0MIoPzdO2pM87+UhpRSlGgVS5loFkdAsDPZ7u2JBXV9lChoBmgJaA9DCIwTX+3of3FAlIaUUpRoFUvpaBZHQLAz+CQ9zOp1fZQoaAZoCWgPQwj2CgvuB4NxQJSGlFKUaBVL7mgWR0CwNACWzF/AdX2UKGgGaAloD0MI91rQe2OYH0CUhpRSlGgVS4RoFkdAsDQBnPE873V9lChoBmgJaA9DCGTpQxdU7XFAlIaUUpRoFU1aAWgWR0CwNArUXpGGdX2UKGgGaAloD0MIxmzJqkjScECUhpRSlGgVS+ZoFkdAsDQaMFUyYXV9lChoBmgJaA9DCHwsfegC3W9AlIaUUpRoFUvcaBZHQLA0HQFLWZt1fZQoaAZoCWgPQwh07KASl9NxQJSGlFKUaBVL9WgWR0CwNCJhfBvadX2UKGgGaAloD0MIovDZOrjxb0CUhpRSlGgVS9hoFkdAsDQmeiBXjnV9lChoBmgJaA9DCL6kMVpHE0dAlIaUUpRoFUupaBZHQLA0M8n/kvN1fZQoaAZoCWgPQwgvwhTlErFyQJSGlFKUaBVL8WgWR0CwNEHeizsydX2UKGgGaAloD0MIk6tY/GbOcECUhpRSlGgVS9toFkdAsDRKD8LronV9lChoBmgJaA9DCM76lGPyF3JAlIaUUpRoFUvwaBZHQLA0TJ8OTaF1fZQoaAZoCWgPQwhBuW3fo2dwQJSGlFKUaBVL6mgWR0CwNFB2KVIJdX2UKGgGaAloD0MIZ5sb01N8cECUhpRSlGgVS/FoFkdAsDRY6NlyzXV9lChoBmgJaA9DCHrHKTqS70BAlIaUUpRoFUugaBZHQLA0Y2fTTfB1fZQoaAZoCWgPQwjlfRzNkfEwQJSGlFKUaBVLm2gWR0CwNGc+zMRpdX2UKGgGaAloD0MIqIqp9FNIcUCUhpRSlGgVS9poFkdAsDRsXXRPXXV9lChoBmgJaA9DCFfMCG+P2nFAlIaUUpRoFU0HAWgWR0CwNIc+zMRpdX2UKGgGaAloD0MIJLVQMrlrcUCUhpRSlGgVS9FoFkdAsDSrFdcB2nV9lChoBmgJaA9DCKbydoTTAuw/lIaUUpRoFUuAaBZHQLA0rF2V3Ux1fZQoaAZoCWgPQwj8GkmC8DdyQJSGlFKUaBVNBgFoFkdAsDSvsWweNnV9lChoBmgJaA9DCJ9W0R8ae3BAlIaUUpRoFUvZaBZHQLA0tdZq20B1fZQoaAZoCWgPQwjo2az6XK9yQJSGlFKUaBVL/GgWR0CwNMEZzgdfdX2UKGgGaAloD0MI0lW6u86GSECUhpRSlGgVS7RoFkdAsDTG/TLGJnV9lChoBmgJaA9DCAx3Loz0LHJAlIaUUpRoFU0AAWgWR0CwNMb9MsYmdX2UKGgGaAloD0MInYTSF0JPb0CUhpRSlGgVS89oFkdAsDTTRu0kW3V9lChoBmgJaA9DCN7lIr5TlXFAlIaUUpRoFUvyaBZHQLA01pr1uix1fZQoaAZoCWgPQwgSFhVxOr1zQJSGlFKUaBVL+2gWR0CwNOiGahHtdX2UKGgGaAloD0MIUIvBwzRQcUCUhpRSlGgVS/RoFkdAsDTu7PIGQnV9lChoBmgJaA9DCFtEFJP3yHBAlIaUUpRoFUvaaBZHQLA0/Dyvs7d1fZQoaAZoCWgPQwjxaOOIteNuQJSGlFKUaBVL6GgWR0CwNQGdEsredX2UKGgGaAloD0MINXo1QClUcUCUhpRSlGgVS91oFkdAsDUELE1l5HV9lChoBmgJaA9DCKoqNBDLBhhAlIaUUpRoFUuEaBZHQLA1Bz7di2F1fZQoaAZoCWgPQwg8g4b+icdvQJSGlFKUaBVLzGgWR0CwNTfikwevdX2UKGgGaAloD0MIqiwKu6ixckCUhpRSlGgVTQoBaBZHQLA1QVtoBaN1fZQoaAZoCWgPQwgcCTTYFJdwQJSGlFKUaBVL7WgWR0CwNVgkHD77dX2UKGgGaAloD0MIT+W0p2SlcECUhpRSlGgVS9poFkdAsDVjJiiItXV9lChoBmgJaA9DCOF86lglsXJAlIaUUpRoFUvnaBZHQLA1Zz67/XJ1fZQoaAZoCWgPQwjCFrt91sNvQJSGlFKUaBVNBQFoFkdAsDVyQOnVG3V9lChoBmgJaA9DCDnSGRh5U0BAlIaUUpRoFUuVaBZHQLA1c0b961N1fZQoaAZoCWgPQwjirl5FhpNxQJSGlFKUaBVL5WgWR0CwNXw8wHqvdX2UKGgGaAloD0MI/vLJiuG+QkCUhpRSlGgVS6xoFkdAsDWA2Hck+3V9lChoBmgJaA9DCHctIR+0mHFAlIaUUpRoFUv1aBZHQLA1hG34Kx91fZQoaAZoCWgPQwjsvmN47NtyQJSGlFKUaBVNEAFoFkdAsDWKksSTQnV9lChoBmgJaA9DCADEXb0KnnBAlIaUUpRoFUvpaBZHQLA1lll9Sdh1fZQoaAZoCWgPQwjaVrPOOFZyQJSGlFKUaBVLzWgWR0CwNZu5vtMPdX2UKGgGaAloD0MIGVjH8QPpcUCUhpRSlGgVS/xoFkdAsDWcv8IiT3V9lChoBmgJaA9DCA1Uxr/PlXBAlIaUUpRoFUvsaBZHQLA1o6k69011fZQoaAZoCWgPQwjTLqaZ7vlNQJSGlFKUaBVLrGgWR0CwNcnOGCZndX2UKGgGaAloD0MIVyJQ/YM8cUCUhpRSlGgVS+FoFkdAsDXcv+OwPnV9lChoBmgJaA9DCEKZRpMLrW1AlIaUUpRoFUvyaBZHQLA14JbMX8B1fZQoaAZoCWgPQwiy9KEL6oczwJSGlFKUaBVLiWgWR0CwNfXWattAdX2UKGgGaAloD0MIXOffLjtDcUCUhpRSlGgVS95oFkdAsDX4ZccENnVlLg=="
|
98 |
+
},
|
99 |
+
"ep_success_buffer": {
|
100 |
+
":type:": "<class 'collections.deque'>",
|
101 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
102 |
+
},
|
103 |
+
"_n_updates": 620,
|
104 |
+
"n_steps": 4048,
|
105 |
+
"gamma": 0.99,
|
106 |
+
"gae_lambda": 0.95,
|
107 |
+
"ent_coef": 0.005,
|
108 |
+
"vf_coef": 0.5,
|
109 |
+
"max_grad_norm": 0.5,
|
110 |
+
"batch_size": 64,
|
111 |
+
"n_epochs": 20,
|
112 |
+
"clip_range": {
|
113 |
+
":type:": "<class 'function'>",
|
114 |
+
":serialized:": "gAWVpAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMckM6XFVzZXJzXE1lbG9uXFB5Y2hhcm1Qcm9qZWN0c1xodWdnaW5nZmFjZVxkZWVwLXJsLWNvdXJzZVx2ZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
115 |
+
},
|
116 |
+
"clip_range_vf": null,
|
117 |
+
"normalize_advantage": true,
|
118 |
+
"target_kl": null
|
119 |
+
}
|
ppo-LL-test-4/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d544e2d5196a02f0dc689ab74e29e0c18655e68dff221f220aca8a912cafb61
|
3 |
+
size 1054185
|
ppo-LL-test-4/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b9b5bee4409b2ab485e1096b74cc7d7e3a67e2eb7a6e5f5e954a0979a3239f5
|
3 |
+
size 525177
|
ppo-LL-test-4/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LL-test-4/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
+
Python: 3.9.10
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cpu
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.24.0
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 273.2566380525176, "std_reward": 16.629656091974006, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T16:33:07.146481"}
|