|
--- |
|
base_model: finiteautomata/beto-sentiment-analysis |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: beto-sentiment-analysis-finetuned-detests24 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# beto-sentiment-analysis-finetuned-detests24 |
|
|
|
This model is a fine-tuned version of [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0647 |
|
- Accuracy: 0.8609 |
|
- F1-score: 0.7906 |
|
- Precision: 0.8107 |
|
- Recall: 0.7755 |
|
- Auc: 0.7755 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:| |
|
| 0.4035 | 1.0 | 153 | 0.3459 | 0.8527 | 0.7540 | 0.8257 | 0.7219 | 0.7219 | |
|
| 0.2217 | 2.0 | 306 | 0.4773 | 0.8183 | 0.7700 | 0.7519 | 0.8088 | 0.8088 | |
|
| 0.0787 | 3.0 | 459 | 0.6757 | 0.8576 | 0.7959 | 0.7982 | 0.7936 | 0.7936 | |
|
| 0.016 | 4.0 | 612 | 0.7801 | 0.8478 | 0.7851 | 0.7830 | 0.7873 | 0.7873 | |
|
| 0.0251 | 5.0 | 765 | 0.9783 | 0.8511 | 0.7994 | 0.7862 | 0.8173 | 0.8173 | |
|
| 0.0159 | 6.0 | 918 | 0.9841 | 0.8576 | 0.7926 | 0.8001 | 0.7860 | 0.7860 | |
|
| 0.0002 | 7.0 | 1071 | 0.9943 | 0.8609 | 0.7906 | 0.8107 | 0.7755 | 0.7755 | |
|
| 0.0001 | 8.0 | 1224 | 1.0252 | 0.8625 | 0.7925 | 0.8139 | 0.7765 | 0.7765 | |
|
| 0.0013 | 9.0 | 1377 | 1.0663 | 0.8511 | 0.7808 | 0.7916 | 0.7716 | 0.7716 | |
|
| 0.0001 | 10.0 | 1530 | 1.0647 | 0.8609 | 0.7906 | 0.8107 | 0.7755 | 0.7755 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.1 |
|
|