|
--- |
|
license: other |
|
base_model: meta-llama/Meta-Llama-3-70B |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: C013_Meta-Llama-3-70B_pretrain_20240508_200642 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# C013_Meta-Llama-3-70B_pretrain_20240508_200642 |
|
|
|
This model is a fine-tuned version of [/mnt/fl/models/llama3/Meta-Llama-3-70B](https://huggingface.co//mnt/fl/models/llama3/Meta-Llama-3-70B) on the C013_data dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7400 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 32 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: polynomial |
|
- lr_scheduler_warmup_ratio: 0.075 |
|
- num_epochs: 4.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.8776 | 0.2090 | 7 | 0.7902 | |
|
| 0.8473 | 0.4179 | 14 | 0.7703 | |
|
| 0.8293 | 0.6269 | 21 | 0.7603 | |
|
| 0.8173 | 0.8358 | 28 | 0.7481 | |
|
| 0.7415 | 1.0448 | 35 | 0.7402 | |
|
| 0.6794 | 1.2537 | 42 | 0.7419 | |
|
| 0.6688 | 1.4627 | 49 | 0.7392 | |
|
| 0.6498 | 1.6716 | 56 | 0.7367 | |
|
| 0.6701 | 1.8806 | 63 | 0.7358 | |
|
| 0.664 | 2.0896 | 70 | 0.7355 | |
|
| 0.6447 | 2.2985 | 77 | 0.7361 | |
|
| 0.6412 | 2.5075 | 84 | 0.7373 | |
|
| 0.6458 | 2.7164 | 91 | 0.7383 | |
|
| 0.6356 | 2.9254 | 98 | 0.7387 | |
|
| 0.6398 | 3.1343 | 105 | 0.7387 | |
|
| 0.6228 | 3.3433 | 112 | 0.7391 | |
|
| 0.6139 | 3.5522 | 119 | 0.7395 | |
|
| 0.591 | 3.7612 | 126 | 0.7398 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|