TianyiQ's picture
Upload folder using huggingface_hub
591063c verified
|
raw
history blame
2.52 kB
---
license: other
base_model: meta-llama/Meta-Llama-3-70B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: C013_Meta-Llama-3-70B_pretrain_20240508_200642
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# C013_Meta-Llama-3-70B_pretrain_20240508_200642
This model is a fine-tuned version of [/mnt/fl/models/llama3/Meta-Llama-3-70B](https://huggingface.co//mnt/fl/models/llama3/Meta-Llama-3-70B) on the C013_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7400
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_ratio: 0.075
- num_epochs: 4.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8776 | 0.2090 | 7 | 0.7902 |
| 0.8473 | 0.4179 | 14 | 0.7703 |
| 0.8293 | 0.6269 | 21 | 0.7603 |
| 0.8173 | 0.8358 | 28 | 0.7481 |
| 0.7415 | 1.0448 | 35 | 0.7402 |
| 0.6794 | 1.2537 | 42 | 0.7419 |
| 0.6688 | 1.4627 | 49 | 0.7392 |
| 0.6498 | 1.6716 | 56 | 0.7367 |
| 0.6701 | 1.8806 | 63 | 0.7358 |
| 0.664 | 2.0896 | 70 | 0.7355 |
| 0.6447 | 2.2985 | 77 | 0.7361 |
| 0.6412 | 2.5075 | 84 | 0.7373 |
| 0.6458 | 2.7164 | 91 | 0.7383 |
| 0.6356 | 2.9254 | 98 | 0.7387 |
| 0.6398 | 3.1343 | 105 | 0.7387 |
| 0.6228 | 3.3433 | 112 | 0.7391 |
| 0.6139 | 3.5522 | 119 | 0.7395 |
| 0.591 | 3.7612 | 126 | 0.7398 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1