Edit model card

lilT_fintuning

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6381
  • Answer: {'precision': 0.8744075829383886, 'recall': 0.9033047735618115, 'f1': 0.8886213124623721, 'number': 817}
  • Header: {'precision': 0.6261682242990654, 'recall': 0.5630252100840336, 'f1': 0.5929203539823009, 'number': 119}
  • Question: {'precision': 0.8998194945848376, 'recall': 0.9257195914577531, 'f1': 0.9125858123569794, 'number': 1077}
  • Overall Precision: 0.8752
  • Overall Recall: 0.8952
  • Overall F1: 0.8851
  • Overall Accuracy: 0.8174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4236 10.53 200 0.9243 {'precision': 0.8401360544217688, 'recall': 0.9069767441860465, 'f1': 0.872277810476751, 'number': 817} {'precision': 0.5333333333333333, 'recall': 0.40336134453781514, 'f1': 0.45933014354066987, 'number': 119} {'precision': 0.8789571694599627, 'recall': 0.8765088207985144, 'f1': 0.8777312877731288, 'number': 1077} 0.8470 0.8609 0.8539 0.8079
0.0472 21.05 400 1.2753 {'precision': 0.8249721293199554, 'recall': 0.9057527539779682, 'f1': 0.8634772462077013, 'number': 817} {'precision': 0.5, 'recall': 0.5798319327731093, 'f1': 0.5369649805447471, 'number': 119} {'precision': 0.8778195488721805, 'recall': 0.8672237697307336, 'f1': 0.8724894908921065, 'number': 1077} 0.8304 0.8659 0.8478 0.7910
0.014 31.58 600 1.3381 {'precision': 0.8335233751425314, 'recall': 0.8947368421052632, 'f1': 0.8630460448642266, 'number': 817} {'precision': 0.6292134831460674, 'recall': 0.47058823529411764, 'f1': 0.5384615384615384, 'number': 119} {'precision': 0.8754416961130742, 'recall': 0.9201485608170845, 'f1': 0.8972385694884564, 'number': 1077} 0.8475 0.8833 0.8650 0.8046
0.0063 42.11 800 1.4519 {'precision': 0.8738095238095238, 'recall': 0.8984088127294981, 'f1': 0.8859384429692213, 'number': 817} {'precision': 0.5833333333333334, 'recall': 0.6470588235294118, 'f1': 0.6135458167330677, 'number': 119} {'precision': 0.9008341056533827, 'recall': 0.9025069637883009, 'f1': 0.901669758812616, 'number': 1077} 0.8693 0.8857 0.8775 0.8092
0.0036 52.63 1000 1.6211 {'precision': 0.8363228699551569, 'recall': 0.9130966952264382, 'f1': 0.8730251609128145, 'number': 817} {'precision': 0.584070796460177, 'recall': 0.5546218487394958, 'f1': 0.5689655172413793, 'number': 119} {'precision': 0.8984302862419206, 'recall': 0.903435468895079, 'f1': 0.900925925925926, 'number': 1077} 0.8549 0.8867 0.8705 0.8039
0.0029 63.16 1200 1.6274 {'precision': 0.871007371007371, 'recall': 0.8678090575275398, 'f1': 0.8694052728387494, 'number': 817} {'precision': 0.5714285714285714, 'recall': 0.5042016806722689, 'f1': 0.5357142857142857, 'number': 119} {'precision': 0.8844404003639672, 'recall': 0.9025069637883009, 'f1': 0.8933823529411765, 'number': 1077} 0.8627 0.8649 0.8638 0.8008
0.0018 73.68 1400 1.6562 {'precision': 0.8401360544217688, 'recall': 0.9069767441860465, 'f1': 0.872277810476751, 'number': 817} {'precision': 0.6132075471698113, 'recall': 0.5462184873949579, 'f1': 0.5777777777777778, 'number': 119} {'precision': 0.8892921960072595, 'recall': 0.9099350046425255, 'f1': 0.8994951812758146, 'number': 1077} 0.8545 0.8872 0.8706 0.8096
0.001 84.21 1600 1.6388 {'precision': 0.8534090909090909, 'recall': 0.9192166462668299, 'f1': 0.8850913376546846, 'number': 817} {'precision': 0.63, 'recall': 0.5294117647058824, 'f1': 0.5753424657534247, 'number': 119} {'precision': 0.9009174311926605, 'recall': 0.9117920148560817, 'f1': 0.9063221042916475, 'number': 1077} 0.8676 0.8922 0.8797 0.8103
0.0007 94.74 1800 1.6278 {'precision': 0.8545454545454545, 'recall': 0.9204406364749081, 'f1': 0.8862698880377136, 'number': 817} {'precision': 0.6078431372549019, 'recall': 0.5210084033613446, 'f1': 0.5610859728506787, 'number': 119} {'precision': 0.8909740840035746, 'recall': 0.9257195914577531, 'f1': 0.9080145719489982, 'number': 1077} 0.8620 0.8997 0.8804 0.8216
0.0002 105.26 2000 1.6381 {'precision': 0.8744075829383886, 'recall': 0.9033047735618115, 'f1': 0.8886213124623721, 'number': 817} {'precision': 0.6261682242990654, 'recall': 0.5630252100840336, 'f1': 0.5929203539823009, 'number': 119} {'precision': 0.8998194945848376, 'recall': 0.9257195914577531, 'f1': 0.9125858123569794, 'number': 1077} 0.8752 0.8952 0.8851 0.8174
0.0002 115.79 2200 1.6545 {'precision': 0.8757467144563919, 'recall': 0.8971848225214198, 'f1': 0.8863361547762998, 'number': 817} {'precision': 0.625, 'recall': 0.5462184873949579, 'f1': 0.5829596412556054, 'number': 119} {'precision': 0.8902765388046388, 'recall': 0.9266480965645311, 'f1': 0.908098271155596, 'number': 1077} 0.8710 0.8922 0.8815 0.8155
0.0002 126.32 2400 1.6477 {'precision': 0.8658823529411764, 'recall': 0.9008567931456548, 'f1': 0.8830233953209357, 'number': 817} {'precision': 0.6116504854368932, 'recall': 0.5294117647058824, 'f1': 0.5675675675675675, 'number': 119} {'precision': 0.8930817610062893, 'recall': 0.9229340761374187, 'f1': 0.9077625570776255, 'number': 1077} 0.8679 0.8907 0.8791 0.8167

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Oumay/lilT_fintuning

Finetuned
(43)
this model