|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from collections import OrderedDict |
|
|
|
import torch |
|
|
|
from tqdm import tqdm |
|
|
|
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base |
|
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames |
|
|
|
|
|
class SAM2VideoPredictor(SAM2Base): |
|
"""The predictor class to handle user interactions and manage inference states.""" |
|
|
|
def __init__( |
|
self, |
|
fill_hole_area=0, |
|
|
|
non_overlap_masks=False, |
|
|
|
|
|
clear_non_cond_mem_around_input=False, |
|
|
|
clear_non_cond_mem_for_multi_obj=False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.fill_hole_area = fill_hole_area |
|
self.non_overlap_masks = non_overlap_masks |
|
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input |
|
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj |
|
|
|
@torch.inference_mode() |
|
def init_state( |
|
self, |
|
video_path, |
|
offload_video_to_cpu=False, |
|
offload_state_to_cpu=False, |
|
async_loading_frames=False, |
|
): |
|
"""Initialize an inference state.""" |
|
compute_device = self.device |
|
images, video_height, video_width = load_video_frames( |
|
video_path=video_path, |
|
image_size=self.image_size, |
|
offload_video_to_cpu=offload_video_to_cpu, |
|
async_loading_frames=async_loading_frames, |
|
compute_device=compute_device, |
|
) |
|
inference_state = {} |
|
inference_state["images"] = images |
|
inference_state["num_frames"] = len(images) |
|
|
|
|
|
inference_state["offload_video_to_cpu"] = offload_video_to_cpu |
|
|
|
|
|
|
|
|
|
inference_state["offload_state_to_cpu"] = offload_state_to_cpu |
|
|
|
inference_state["video_height"] = video_height |
|
inference_state["video_width"] = video_width |
|
inference_state["device"] = compute_device |
|
if offload_state_to_cpu: |
|
inference_state["storage_device"] = torch.device("cpu") |
|
else: |
|
inference_state["storage_device"] = compute_device |
|
|
|
inference_state["point_inputs_per_obj"] = {} |
|
inference_state["mask_inputs_per_obj"] = {} |
|
|
|
inference_state["cached_features"] = {} |
|
|
|
inference_state["constants"] = {} |
|
|
|
inference_state["obj_id_to_idx"] = OrderedDict() |
|
inference_state["obj_idx_to_id"] = OrderedDict() |
|
inference_state["obj_ids"] = [] |
|
|
|
inference_state["output_dict"] = { |
|
"cond_frame_outputs": {}, |
|
"non_cond_frame_outputs": {}, |
|
} |
|
|
|
inference_state["output_dict_per_obj"] = {} |
|
|
|
|
|
inference_state["temp_output_dict_per_obj"] = {} |
|
|
|
|
|
inference_state["consolidated_frame_inds"] = { |
|
"cond_frame_outputs": set(), |
|
"non_cond_frame_outputs": set(), |
|
} |
|
|
|
inference_state["tracking_has_started"] = False |
|
inference_state["frames_already_tracked"] = {} |
|
|
|
self._get_image_feature(inference_state, frame_idx=0, batch_size=1) |
|
return inference_state |
|
|
|
def init_state_images( |
|
self, |
|
images, |
|
video_height, |
|
video_width, |
|
offload_video_to_cpu=False, |
|
offload_state_to_cpu=False, |
|
async_loading_frames=False, |
|
): |
|
"""Initialize an inference state.""" |
|
compute_device = self.device |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_state = {} |
|
inference_state["images"] = images[0] |
|
inference_state["num_frames"] = len(images[0]) |
|
|
|
|
|
inference_state["offload_video_to_cpu"] = offload_video_to_cpu |
|
|
|
|
|
|
|
|
|
inference_state["offload_state_to_cpu"] = offload_state_to_cpu |
|
|
|
inference_state["video_height"] = video_height |
|
inference_state["video_width"] = video_width |
|
inference_state["device"] = compute_device |
|
if offload_state_to_cpu: |
|
inference_state["storage_device"] = torch.device("cpu") |
|
else: |
|
inference_state["storage_device"] = compute_device |
|
|
|
inference_state["point_inputs_per_obj"] = {} |
|
inference_state["mask_inputs_per_obj"] = {} |
|
|
|
inference_state["cached_features"] = {} |
|
|
|
inference_state["constants"] = {} |
|
|
|
inference_state["obj_id_to_idx"] = OrderedDict() |
|
inference_state["obj_idx_to_id"] = OrderedDict() |
|
inference_state["obj_ids"] = [] |
|
|
|
inference_state["output_dict"] = { |
|
"cond_frame_outputs": {}, |
|
"non_cond_frame_outputs": {}, |
|
} |
|
|
|
inference_state["output_dict_per_obj"] = {} |
|
|
|
|
|
inference_state["temp_output_dict_per_obj"] = {} |
|
|
|
|
|
inference_state["consolidated_frame_inds"] = { |
|
"cond_frame_outputs": set(), |
|
"non_cond_frame_outputs": set(), |
|
} |
|
|
|
inference_state["tracking_has_started"] = False |
|
inference_state["frames_already_tracked"] = {} |
|
|
|
self._get_image_feature(inference_state, frame_idx=0, batch_size=1) |
|
return inference_state |
|
|
|
|
|
|
|
@classmethod |
|
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor": |
|
""" |
|
Load a pretrained model from the Hugging Face hub. |
|
|
|
Arguments: |
|
model_id (str): The Hugging Face repository ID. |
|
**kwargs: Additional arguments to pass to the model constructor. |
|
|
|
Returns: |
|
(SAM2VideoPredictor): The loaded model. |
|
""" |
|
from sam2.build_sam import build_sam2_video_predictor_hf |
|
|
|
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs) |
|
return sam_model |
|
|
|
def _obj_id_to_idx(self, inference_state, obj_id): |
|
"""Map client-side object id to model-side object index.""" |
|
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) |
|
if obj_idx is not None: |
|
return obj_idx |
|
|
|
|
|
|
|
allow_new_object = not inference_state["tracking_has_started"] |
|
if allow_new_object: |
|
|
|
obj_idx = len(inference_state["obj_id_to_idx"]) |
|
inference_state["obj_id_to_idx"][obj_id] = obj_idx |
|
inference_state["obj_idx_to_id"][obj_idx] = obj_id |
|
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) |
|
|
|
inference_state["point_inputs_per_obj"][obj_idx] = {} |
|
inference_state["mask_inputs_per_obj"][obj_idx] = {} |
|
inference_state["output_dict_per_obj"][obj_idx] = { |
|
"cond_frame_outputs": {}, |
|
"non_cond_frame_outputs": {}, |
|
} |
|
inference_state["temp_output_dict_per_obj"][obj_idx] = { |
|
"cond_frame_outputs": {}, |
|
"non_cond_frame_outputs": {}, |
|
} |
|
return obj_idx |
|
else: |
|
raise RuntimeError( |
|
f"Cannot add new object id {obj_id} after tracking starts. " |
|
f"All existing object ids: {inference_state['obj_ids']}. " |
|
f"Please call 'reset_state' to restart from scratch." |
|
) |
|
|
|
def _obj_idx_to_id(self, inference_state, obj_idx): |
|
"""Map model-side object index to client-side object id.""" |
|
return inference_state["obj_idx_to_id"][obj_idx] |
|
|
|
def _get_obj_num(self, inference_state): |
|
"""Get the total number of unique object ids received so far in this session.""" |
|
return len(inference_state["obj_idx_to_id"]) |
|
|
|
@torch.inference_mode() |
|
def add_new_points_or_box( |
|
self, |
|
inference_state, |
|
frame_idx, |
|
obj_id, |
|
points=None, |
|
labels=None, |
|
clear_old_points=True, |
|
normalize_coords=True, |
|
box=None, |
|
): |
|
"""Add new points to a frame.""" |
|
obj_idx = self._obj_id_to_idx(inference_state, obj_id) |
|
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] |
|
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] |
|
|
|
if (points is not None) != (labels is not None): |
|
raise ValueError("points and labels must be provided together") |
|
if points is None and box is None: |
|
raise ValueError("at least one of points or box must be provided as input") |
|
|
|
if points is None: |
|
points = torch.zeros(0, 2, dtype=torch.bfloat16) |
|
elif not isinstance(points, torch.Tensor): |
|
points = torch.tensor(points, dtype=torch.bfloat16) |
|
if labels is None: |
|
labels = torch.zeros(0, dtype=torch.int32) |
|
elif not isinstance(labels, torch.Tensor): |
|
labels = torch.tensor(labels, dtype=torch.int32) |
|
if points.dim() == 2: |
|
points = points.unsqueeze(0) |
|
if labels.dim() == 1: |
|
labels = labels.unsqueeze(0) |
|
|
|
|
|
|
|
if box is not None: |
|
if not clear_old_points: |
|
raise ValueError( |
|
"cannot add box without clearing old points, since " |
|
"box prompt must be provided before any point prompt " |
|
"(please use clear_old_points=True instead)" |
|
) |
|
if inference_state["tracking_has_started"]: |
|
warnings.warn( |
|
"You are adding a box after tracking starts. SAM 2 may not always be " |
|
"able to incorporate a box prompt for *refinement*. If you intend to " |
|
"use box prompt as an *initial* input before tracking, please call " |
|
"'reset_state' on the inference state to restart from scratch.", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
if not isinstance(box, torch.Tensor): |
|
box = torch.tensor(box, dtype=torch.bfloat16, device=points.device) |
|
box_coords = box.reshape(1, 2, 2) |
|
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) |
|
box_labels = box_labels.reshape(1, 2) |
|
points = torch.cat([box_coords, points], dim=1) |
|
labels = torch.cat([box_labels, labels], dim=1) |
|
|
|
|
|
if normalize_coords: |
|
video_H = inference_state["video_height"] |
|
video_W = inference_state["video_width"] |
|
points = points / torch.tensor([video_W, video_H]).to(points.device) |
|
|
|
points = points * self.image_size |
|
points = points.to(inference_state["device"]) |
|
labels = labels.to(inference_state["device"]) |
|
|
|
if not clear_old_points: |
|
point_inputs = point_inputs_per_frame.get(frame_idx, None) |
|
else: |
|
point_inputs = None |
|
point_inputs = concat_points(point_inputs, points, labels) |
|
point_inputs_per_frame[frame_idx] = point_inputs |
|
mask_inputs_per_frame.pop(frame_idx, None) |
|
|
|
|
|
|
|
|
|
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] |
|
|
|
if is_init_cond_frame: |
|
reverse = False |
|
else: |
|
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] |
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] |
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] |
|
|
|
|
|
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond |
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
|
|
|
|
prev_sam_mask_logits = None |
|
|
|
|
|
prev_out = obj_temp_output_dict[storage_key].get(frame_idx) |
|
if prev_out is None: |
|
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) |
|
if prev_out is None: |
|
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) |
|
|
|
if prev_out is not None and prev_out["pred_masks"] is not None: |
|
device = inference_state["device"] |
|
prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True) |
|
|
|
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) |
|
current_out, _ = self._run_single_frame_inference( |
|
inference_state=inference_state, |
|
output_dict=obj_output_dict, |
|
frame_idx=frame_idx, |
|
batch_size=1, |
|
is_init_cond_frame=is_init_cond_frame, |
|
point_inputs=point_inputs, |
|
mask_inputs=None, |
|
reverse=reverse, |
|
|
|
|
|
|
|
|
|
run_mem_encoder=False, |
|
prev_sam_mask_logits=prev_sam_mask_logits, |
|
) |
|
|
|
obj_temp_output_dict[storage_key][frame_idx] = current_out |
|
|
|
|
|
obj_ids = inference_state["obj_ids"] |
|
consolidated_out = self._consolidate_temp_output_across_obj( |
|
inference_state, |
|
frame_idx, |
|
is_cond=is_cond, |
|
run_mem_encoder=False, |
|
consolidate_at_video_res=True, |
|
) |
|
_, video_res_masks = self._get_orig_video_res_output( |
|
inference_state, consolidated_out["pred_masks_video_res"] |
|
) |
|
return frame_idx, obj_ids, video_res_masks |
|
|
|
@torch.inference_mode() |
|
def add_new_box_embeding( |
|
self, |
|
inference_state, |
|
frame_idx, |
|
obj_id, |
|
box_embeding = None, |
|
points=None, |
|
labels=None, |
|
clear_old_points=True, |
|
normalize_coords=True, |
|
box=None, |
|
): |
|
"""Add new points to a frame.""" |
|
obj_idx = self._obj_id_to_idx(inference_state, obj_id) |
|
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] |
|
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] |
|
|
|
if (points is not None) != (labels is not None): |
|
raise ValueError("points and labels must be provided together") |
|
if points is None and box is None: |
|
raise ValueError("at least one of points or box must be provided as input") |
|
|
|
if points is None: |
|
points = torch.zeros(0, 2, dtype=torch.bfloat16) |
|
elif not isinstance(points, torch.Tensor): |
|
points = torch.tensor(points, dtype=torch.bfloat16) |
|
if labels is None: |
|
labels = torch.zeros(0, dtype=torch.int32) |
|
elif not isinstance(labels, torch.Tensor): |
|
labels = torch.tensor(labels, dtype=torch.int32) |
|
if points.dim() == 2: |
|
points = points.unsqueeze(0) |
|
if labels.dim() == 1: |
|
labels = labels.unsqueeze(0) |
|
|
|
|
|
|
|
if box is not None: |
|
if not clear_old_points: |
|
raise ValueError( |
|
"cannot add box without clearing old points, since " |
|
"box prompt must be provided before any point prompt " |
|
"(please use clear_old_points=True instead)" |
|
) |
|
if inference_state["tracking_has_started"]: |
|
warnings.warn( |
|
"You are adding a box after tracking starts. SAM 2 may not always be " |
|
"able to incorporate a box prompt for *refinement*. If you intend to " |
|
"use box prompt as an *initial* input before tracking, please call " |
|
"'reset_state' on the inference state to restart from scratch.", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
if not isinstance(box, torch.Tensor): |
|
box = torch.tensor(box, dtype=torch.bfloat16, device=points.device) |
|
box_coords = box.reshape(1, 2, 2) |
|
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) |
|
box_labels = box_labels.reshape(1, 2) |
|
points = torch.cat([box_coords, points], dim=1) |
|
labels = torch.cat([box_labels, labels], dim=1) |
|
|
|
if normalize_coords: |
|
video_H = inference_state["video_height"] |
|
video_W = inference_state["video_width"] |
|
points = points / torch.tensor([video_W, video_H]).to(points.device) |
|
|
|
points = points * self.image_size |
|
points = points.to(inference_state["device"]) |
|
labels = labels.to(inference_state["device"]) |
|
|
|
if not clear_old_points: |
|
point_inputs = point_inputs_per_frame.get(frame_idx, None) |
|
else: |
|
point_inputs = None |
|
point_inputs = concat_points(point_inputs, points, labels) |
|
point_inputs_per_frame[frame_idx] = point_inputs |
|
mask_inputs_per_frame.pop(frame_idx, None) |
|
|
|
|
|
|
|
|
|
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] |
|
|
|
if is_init_cond_frame: |
|
reverse = False |
|
else: |
|
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] |
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] |
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] |
|
|
|
|
|
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond |
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
|
|
|
|
prev_sam_mask_logits = None |
|
|
|
|
|
prev_out = obj_temp_output_dict[storage_key].get(frame_idx) |
|
if prev_out is None: |
|
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) |
|
if prev_out is None: |
|
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) |
|
|
|
if prev_out is not None and prev_out["pred_masks"] is not None: |
|
device = inference_state["device"] |
|
prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True) |
|
|
|
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) |
|
current_out, _ = self._run_single_frame_inference_embed( |
|
inference_state=inference_state, |
|
output_dict=obj_output_dict, |
|
frame_idx=frame_idx, |
|
batch_size=1, |
|
is_init_cond_frame=is_init_cond_frame, |
|
box_embed=box_embeding, |
|
point_inputs=point_inputs, |
|
mask_inputs=None, |
|
reverse=reverse, |
|
|
|
|
|
|
|
|
|
run_mem_encoder=False, |
|
prev_sam_mask_logits=prev_sam_mask_logits, |
|
) |
|
|
|
obj_temp_output_dict[storage_key][frame_idx] = current_out |
|
|
|
|
|
obj_ids = inference_state["obj_ids"] |
|
consolidated_out = self._consolidate_temp_output_across_obj( |
|
inference_state, |
|
frame_idx, |
|
is_cond=is_cond, |
|
run_mem_encoder=False, |
|
consolidate_at_video_res=True, |
|
) |
|
_, video_res_masks = self._get_orig_video_res_output( |
|
inference_state, consolidated_out["pred_masks_video_res"] |
|
) |
|
return frame_idx, obj_ids, video_res_masks |
|
|
|
def get_prompt_embeding( |
|
self, |
|
inference_state, |
|
points=None, |
|
labels=None, |
|
normalize_coords=False, |
|
box=None, |
|
device = None |
|
): |
|
if not isinstance(box, torch.Tensor): |
|
box = torch.tensor(box, dtype=torch.bfloat16, device=device) |
|
box_coords = box.reshape(1, 2, 2) |
|
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=device) |
|
box_labels = box_labels.reshape(1, 2) |
|
if points is None: |
|
points = torch.zeros(0, 2, dtype=torch.bfloat16, device=device) |
|
labels = torch.zeros(0, dtype=torch.int32, device=device) |
|
if points.dim() == 2: |
|
points = points.unsqueeze(0) |
|
if labels.dim() == 1: |
|
labels = labels.unsqueeze(0) |
|
points = torch.cat([box_coords, points], dim=1) |
|
labels = torch.cat([box_labels, labels], dim=1) |
|
if normalize_coords: |
|
video_H = inference_state["video_height"] |
|
video_W = inference_state["video_width"] |
|
points = points / torch.tensor([video_W, video_H]).to(points.device) |
|
|
|
points = points * self.image_size |
|
points = points.to(inference_state["device"]) |
|
labels = labels.to(inference_state["device"]) |
|
point_inputs = concat_points(None, points, labels) |
|
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( |
|
points=(point_inputs['point_coords'], point_inputs['point_labels']), |
|
boxes=None, |
|
masks=None, |
|
) |
|
return sparse_embeddings |
|
|
|
|
|
|
|
def add_new_points(self, *args, **kwargs): |
|
"""Deprecated method. Please use `add_new_points_or_box` instead.""" |
|
return self.add_new_points_or_box(*args, **kwargs) |
|
|
|
@torch.inference_mode() |
|
def add_new_mask( |
|
self, |
|
inference_state, |
|
frame_idx, |
|
obj_id, |
|
mask, |
|
): |
|
"""Add new mask to a frame.""" |
|
obj_idx = self._obj_id_to_idx(inference_state, obj_id) |
|
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] |
|
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] |
|
|
|
if not isinstance(mask, torch.Tensor): |
|
mask = torch.tensor(mask, dtype=torch.bool) |
|
assert mask.dim() == 2 |
|
mask_H, mask_W = mask.shape |
|
mask_inputs_orig = mask[None, None] |
|
mask_inputs_orig = mask_inputs_orig.to(inference_state["device"]) |
|
|
|
|
|
if mask_H != self.image_size or mask_W != self.image_size: |
|
mask_inputs = torch.nn.functional.interpolate( |
|
mask_inputs_orig, |
|
size=(self.image_size, self.image_size), |
|
align_corners=False, |
|
mode="bilinear", |
|
antialias=True, |
|
) |
|
mask_inputs = (mask_inputs >= 0.5) |
|
else: |
|
mask_inputs = mask_inputs_orig |
|
|
|
mask_inputs_per_frame[frame_idx] = mask_inputs |
|
point_inputs_per_frame.pop(frame_idx, None) |
|
|
|
|
|
|
|
|
|
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] |
|
|
|
if is_init_cond_frame: |
|
reverse = False |
|
else: |
|
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] |
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] |
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] |
|
|
|
|
|
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond |
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
current_out, _ = self._run_single_frame_inference( |
|
inference_state=inference_state, |
|
output_dict=obj_output_dict, |
|
frame_idx=frame_idx, |
|
batch_size=1, |
|
is_init_cond_frame=is_init_cond_frame, |
|
point_inputs=None, |
|
mask_inputs=mask_inputs, |
|
reverse=reverse, |
|
|
|
|
|
|
|
|
|
run_mem_encoder=False, |
|
) |
|
|
|
obj_temp_output_dict[storage_key][frame_idx] = current_out |
|
|
|
|
|
obj_ids = inference_state["obj_ids"] |
|
consolidated_out = self._consolidate_temp_output_across_obj( |
|
inference_state, |
|
frame_idx, |
|
is_cond=is_cond, |
|
run_mem_encoder=False, |
|
consolidate_at_video_res=True, |
|
) |
|
_, video_res_masks = self._get_orig_video_res_output( |
|
inference_state, consolidated_out["pred_masks_video_res"] |
|
) |
|
return frame_idx, obj_ids, video_res_masks |
|
|
|
def _get_orig_video_res_output(self, inference_state, any_res_masks): |
|
""" |
|
Resize the object scores to the original video resolution (video_res_masks) |
|
and apply non-overlapping constraints for final output. |
|
""" |
|
device = inference_state["device"] |
|
video_H = inference_state["video_height"] |
|
video_W = inference_state["video_width"] |
|
any_res_masks = any_res_masks.to(device, non_blocking=True) |
|
if any_res_masks.shape[-2:] == (video_H, video_W): |
|
video_res_masks = any_res_masks |
|
else: |
|
video_res_masks = torch.nn.functional.interpolate( |
|
any_res_masks, |
|
size=(video_H, video_W), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
if self.non_overlap_masks: |
|
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) |
|
return any_res_masks, video_res_masks |
|
|
|
def _consolidate_temp_output_across_obj( |
|
self, |
|
inference_state, |
|
frame_idx, |
|
is_cond, |
|
run_mem_encoder, |
|
consolidate_at_video_res=False, |
|
): |
|
""" |
|
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on |
|
a frame into a single output for all objects, including |
|
1) fill any missing objects either from `output_dict_per_obj` (if they exist in |
|
`output_dict_per_obj` for this frame) or leave them as placeholder values |
|
(if they don't exist in `output_dict_per_obj` for this frame); |
|
2) if specified, rerun memory encoder after apply non-overlapping constraints |
|
on the object scores. |
|
""" |
|
batch_size = self._get_obj_num(inference_state) |
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
|
|
if consolidate_at_video_res: |
|
assert not run_mem_encoder, "memory encoder cannot run at video resolution" |
|
consolidated_H = inference_state["video_height"] |
|
consolidated_W = inference_state["video_width"] |
|
consolidated_mask_key = "pred_masks_video_res" |
|
else: |
|
consolidated_H = consolidated_W = self.image_size // 4 |
|
consolidated_mask_key = "pred_masks" |
|
|
|
|
|
|
|
|
|
|
|
consolidated_out = { |
|
"maskmem_features": None, |
|
"maskmem_pos_enc": None, |
|
consolidated_mask_key: torch.full( |
|
size=(batch_size, 1, consolidated_H, consolidated_W), |
|
fill_value=NO_OBJ_SCORE, |
|
dtype=torch.bfloat16, |
|
device=inference_state["storage_device"], |
|
), |
|
"obj_ptr": torch.full( |
|
size=(batch_size, self.hidden_dim), |
|
fill_value=NO_OBJ_SCORE, |
|
dtype=torch.bfloat16, |
|
device=inference_state["device"], |
|
), |
|
} |
|
empty_mask_ptr = None |
|
for obj_idx in range(batch_size): |
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] |
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] |
|
out = obj_temp_output_dict[storage_key].get(frame_idx, None) |
|
|
|
|
|
|
|
|
|
if out is None: |
|
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) |
|
if out is None: |
|
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) |
|
|
|
|
|
|
|
if out is None: |
|
|
|
|
|
|
|
if run_mem_encoder: |
|
if empty_mask_ptr is None: |
|
empty_mask_ptr = self._get_empty_mask_ptr( |
|
inference_state, frame_idx |
|
) |
|
|
|
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr |
|
continue |
|
|
|
obj_mask = out["pred_masks"] |
|
consolidated_pred_masks = consolidated_out[consolidated_mask_key] |
|
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: |
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask |
|
else: |
|
|
|
resized_obj_mask = torch.nn.functional.interpolate( |
|
obj_mask, |
|
size=consolidated_pred_masks.shape[-2:], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask |
|
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] |
|
|
|
|
|
|
|
if run_mem_encoder: |
|
device = inference_state["device"] |
|
high_res_masks = torch.nn.functional.interpolate( |
|
consolidated_out["pred_masks"].to(device, non_blocking=True), |
|
size=(self.image_size, self.image_size), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
if self.non_overlap_masks_for_mem_enc: |
|
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) |
|
maskmem_features, maskmem_pos_enc = self._run_memory_encoder( |
|
inference_state=inference_state, |
|
frame_idx=frame_idx, |
|
batch_size=batch_size, |
|
high_res_masks=high_res_masks, |
|
is_mask_from_pts=True, |
|
) |
|
consolidated_out["maskmem_features"] = maskmem_features |
|
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc |
|
|
|
return consolidated_out |
|
|
|
def _get_empty_mask_ptr(self, inference_state, frame_idx): |
|
"""Get a dummy object pointer based on an empty mask on the current frame.""" |
|
|
|
batch_size = 1 |
|
mask_inputs = torch.zeros( |
|
(batch_size, 1, self.image_size, self.image_size), |
|
dtype=torch.bfloat16, |
|
device=inference_state["device"], |
|
) |
|
|
|
|
|
( |
|
_, |
|
_, |
|
current_vision_feats, |
|
current_vision_pos_embeds, |
|
feat_sizes, |
|
) = self._get_image_feature(inference_state, frame_idx, batch_size) |
|
|
|
|
|
current_out = self.track_step( |
|
frame_idx=frame_idx, |
|
is_init_cond_frame=True, |
|
current_vision_feats=current_vision_feats, |
|
current_vision_pos_embeds=current_vision_pos_embeds, |
|
feat_sizes=feat_sizes, |
|
point_inputs=None, |
|
mask_inputs=mask_inputs, |
|
output_dict={}, |
|
num_frames=inference_state["num_frames"], |
|
track_in_reverse=False, |
|
run_mem_encoder=False, |
|
prev_sam_mask_logits=None, |
|
) |
|
return current_out["obj_ptr"] |
|
|
|
@torch.inference_mode() |
|
def propagate_in_video_preflight(self, inference_state): |
|
"""Prepare inference_state and consolidate temporary outputs before tracking.""" |
|
|
|
inference_state["tracking_has_started"] = True |
|
batch_size = self._get_obj_num(inference_state) |
|
|
|
|
|
|
|
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] |
|
output_dict = inference_state["output_dict"] |
|
|
|
|
|
|
|
consolidated_frame_inds = inference_state["consolidated_frame_inds"] |
|
for is_cond in [False, True]: |
|
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
|
|
|
|
temp_frame_inds = set() |
|
for obj_temp_output_dict in temp_output_dict_per_obj.values(): |
|
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) |
|
consolidated_frame_inds[storage_key].update(temp_frame_inds) |
|
|
|
for frame_idx in temp_frame_inds: |
|
consolidated_out = self._consolidate_temp_output_across_obj( |
|
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True |
|
) |
|
|
|
output_dict[storage_key][frame_idx] = consolidated_out |
|
self._add_output_per_object( |
|
inference_state, frame_idx, consolidated_out, storage_key |
|
) |
|
clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( |
|
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 |
|
) |
|
if clear_non_cond_mem: |
|
|
|
self._clear_non_cond_mem_around_input(inference_state, frame_idx) |
|
|
|
|
|
for obj_temp_output_dict in temp_output_dict_per_obj.values(): |
|
obj_temp_output_dict[storage_key].clear() |
|
|
|
|
|
|
|
for frame_idx in output_dict["cond_frame_outputs"]: |
|
output_dict["non_cond_frame_outputs"].pop(frame_idx, None) |
|
for obj_output_dict in inference_state["output_dict_per_obj"].values(): |
|
for frame_idx in obj_output_dict["cond_frame_outputs"]: |
|
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) |
|
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: |
|
assert frame_idx in output_dict["cond_frame_outputs"] |
|
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) |
|
|
|
|
|
|
|
all_consolidated_frame_inds = ( |
|
consolidated_frame_inds["cond_frame_outputs"] |
|
| consolidated_frame_inds["non_cond_frame_outputs"] |
|
) |
|
input_frames_inds = set() |
|
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): |
|
input_frames_inds.update(point_inputs_per_frame.keys()) |
|
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): |
|
input_frames_inds.update(mask_inputs_per_frame.keys()) |
|
assert all_consolidated_frame_inds == input_frames_inds |
|
|
|
@torch.inference_mode() |
|
def propagate_in_video( |
|
self, |
|
inference_state, |
|
start_frame_idx=None, |
|
max_frame_num_to_track=None, |
|
reverse=False, |
|
): |
|
"""Propagate the input points across frames to track in the entire video.""" |
|
self.propagate_in_video_preflight(inference_state) |
|
|
|
output_dict = inference_state["output_dict"] |
|
consolidated_frame_inds = inference_state["consolidated_frame_inds"] |
|
obj_ids = inference_state["obj_ids"] |
|
num_frames = inference_state["num_frames"] |
|
batch_size = self._get_obj_num(inference_state) |
|
if len(output_dict["cond_frame_outputs"]) == 0: |
|
raise RuntimeError("No points are provided; please add points first") |
|
clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( |
|
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 |
|
) |
|
|
|
|
|
if start_frame_idx is None: |
|
|
|
start_frame_idx = min(output_dict["cond_frame_outputs"]) |
|
if max_frame_num_to_track is None: |
|
|
|
max_frame_num_to_track = num_frames |
|
if reverse: |
|
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) |
|
if start_frame_idx > 0: |
|
processing_order = range(start_frame_idx, end_frame_idx - 1, -1) |
|
else: |
|
processing_order = [] |
|
else: |
|
end_frame_idx = min( |
|
start_frame_idx + max_frame_num_to_track, num_frames - 1 |
|
) |
|
processing_order = range(start_frame_idx, end_frame_idx + 1) |
|
|
|
for frame_idx in tqdm(processing_order, desc="propagate in video"): |
|
|
|
|
|
|
|
|
|
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: |
|
storage_key = "cond_frame_outputs" |
|
current_out = output_dict[storage_key][frame_idx] |
|
pred_masks = current_out["pred_masks"] |
|
if clear_non_cond_mem: |
|
|
|
self._clear_non_cond_mem_around_input(inference_state, frame_idx) |
|
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: |
|
storage_key = "non_cond_frame_outputs" |
|
current_out = output_dict[storage_key][frame_idx] |
|
pred_masks = current_out["pred_masks"] |
|
else: |
|
storage_key = "non_cond_frame_outputs" |
|
current_out, pred_masks = self._run_single_frame_inference( |
|
inference_state=inference_state, |
|
output_dict=output_dict, |
|
frame_idx=frame_idx, |
|
batch_size=batch_size, |
|
is_init_cond_frame=False, |
|
point_inputs=None, |
|
mask_inputs=None, |
|
reverse=reverse, |
|
run_mem_encoder=True, |
|
) |
|
output_dict[storage_key][frame_idx] = current_out |
|
|
|
|
|
self._add_output_per_object( |
|
inference_state, frame_idx, current_out, storage_key |
|
) |
|
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} |
|
|
|
|
|
|
|
_, video_res_masks = self._get_orig_video_res_output( |
|
inference_state, pred_masks |
|
) |
|
yield frame_idx, obj_ids, video_res_masks |
|
|
|
def _add_output_per_object( |
|
self, inference_state, frame_idx, current_out, storage_key |
|
): |
|
""" |
|
Split a multi-object output into per-object output slices and add them into |
|
`output_dict_per_obj`. The resulting slices share the same tensor storage. |
|
""" |
|
maskmem_features = current_out["maskmem_features"] |
|
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) |
|
|
|
maskmem_pos_enc = current_out["maskmem_pos_enc"] |
|
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) |
|
|
|
output_dict_per_obj = inference_state["output_dict_per_obj"] |
|
for obj_idx, obj_output_dict in output_dict_per_obj.items(): |
|
obj_slice = slice(obj_idx, obj_idx + 1) |
|
obj_out = { |
|
"maskmem_features": None, |
|
"maskmem_pos_enc": None, |
|
"pred_masks": current_out["pred_masks"][obj_slice], |
|
"obj_ptr": current_out["obj_ptr"][obj_slice], |
|
} |
|
if maskmem_features is not None: |
|
obj_out["maskmem_features"] = maskmem_features[obj_slice] |
|
if maskmem_pos_enc is not None: |
|
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] |
|
obj_output_dict[storage_key][frame_idx] = obj_out |
|
|
|
@torch.inference_mode() |
|
def reset_state(self, inference_state): |
|
"""Remove all input points or mask in all frames throughout the video.""" |
|
self._reset_tracking_results(inference_state) |
|
|
|
inference_state["obj_id_to_idx"].clear() |
|
inference_state["obj_idx_to_id"].clear() |
|
inference_state["obj_ids"].clear() |
|
inference_state["point_inputs_per_obj"].clear() |
|
inference_state["mask_inputs_per_obj"].clear() |
|
inference_state["output_dict_per_obj"].clear() |
|
inference_state["temp_output_dict_per_obj"].clear() |
|
|
|
def _reset_tracking_results(self, inference_state): |
|
"""Reset all tracking inputs and results across the videos.""" |
|
for v in inference_state["point_inputs_per_obj"].values(): |
|
v.clear() |
|
for v in inference_state["mask_inputs_per_obj"].values(): |
|
v.clear() |
|
for v in inference_state["output_dict_per_obj"].values(): |
|
v["cond_frame_outputs"].clear() |
|
v["non_cond_frame_outputs"].clear() |
|
for v in inference_state["temp_output_dict_per_obj"].values(): |
|
v["cond_frame_outputs"].clear() |
|
v["non_cond_frame_outputs"].clear() |
|
inference_state["output_dict"]["cond_frame_outputs"].clear() |
|
inference_state["output_dict"]["non_cond_frame_outputs"].clear() |
|
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear() |
|
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear() |
|
inference_state["tracking_has_started"] = False |
|
inference_state["frames_already_tracked"].clear() |
|
|
|
def _get_image_feature(self, inference_state, frame_idx, batch_size): |
|
"""Compute the image features on a given frame.""" |
|
|
|
image, backbone_out = inference_state["cached_features"].get( |
|
frame_idx, (None, None) |
|
) |
|
if backbone_out is None: |
|
|
|
device = inference_state["device"] |
|
|
|
|
|
image = inference_state["images"][frame_idx].to(device).unsqueeze(0) |
|
|
|
backbone_out = self.forward_image(image) |
|
|
|
|
|
inference_state["cached_features"] = {frame_idx: (image, backbone_out)} |
|
|
|
|
|
expanded_image = image.expand(batch_size, -1, -1, -1) |
|
expanded_backbone_out = { |
|
"backbone_fpn": backbone_out["backbone_fpn"].copy(), |
|
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(), |
|
} |
|
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): |
|
expanded_backbone_out["backbone_fpn"][i] = feat.expand( |
|
batch_size, -1, -1, -1 |
|
) |
|
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): |
|
pos = pos.expand(batch_size, -1, -1, -1) |
|
expanded_backbone_out["vision_pos_enc"][i] = pos |
|
|
|
features = self._prepare_backbone_features(expanded_backbone_out) |
|
features = (expanded_image,) + features |
|
return features |
|
|
|
def _run_single_frame_inference( |
|
self, |
|
inference_state, |
|
output_dict, |
|
frame_idx, |
|
batch_size, |
|
is_init_cond_frame, |
|
point_inputs, |
|
mask_inputs, |
|
reverse, |
|
run_mem_encoder, |
|
prev_sam_mask_logits=None, |
|
): |
|
"""Run tracking on a single frame based on current inputs and previous memory.""" |
|
|
|
( |
|
_, |
|
_, |
|
current_vision_feats, |
|
current_vision_pos_embeds, |
|
feat_sizes, |
|
) = self._get_image_feature(inference_state, frame_idx, batch_size) |
|
|
|
|
|
assert point_inputs is None or mask_inputs is None |
|
current_out = self.track_step( |
|
frame_idx=frame_idx, |
|
is_init_cond_frame=is_init_cond_frame, |
|
current_vision_feats=current_vision_feats, |
|
current_vision_pos_embeds=current_vision_pos_embeds, |
|
feat_sizes=feat_sizes, |
|
point_inputs=point_inputs, |
|
mask_inputs=mask_inputs, |
|
output_dict=output_dict, |
|
num_frames=inference_state["num_frames"], |
|
track_in_reverse=reverse, |
|
run_mem_encoder=run_mem_encoder, |
|
prev_sam_mask_logits=prev_sam_mask_logits, |
|
) |
|
|
|
|
|
storage_device = inference_state["storage_device"] |
|
maskmem_features = current_out["maskmem_features"] |
|
if maskmem_features is not None: |
|
maskmem_features = maskmem_features.to(torch.bfloat16) |
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True) |
|
pred_masks_gpu = current_out["pred_masks"] |
|
|
|
if self.fill_hole_area > 0: |
|
pred_masks_gpu = fill_holes_in_mask_scores( |
|
pred_masks_gpu, self.fill_hole_area |
|
) |
|
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) |
|
|
|
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) |
|
|
|
obj_ptr = current_out["obj_ptr"] |
|
|
|
compact_current_out = { |
|
"maskmem_features": maskmem_features, |
|
"maskmem_pos_enc": maskmem_pos_enc, |
|
"pred_masks": pred_masks, |
|
"obj_ptr": obj_ptr, |
|
} |
|
return compact_current_out, pred_masks_gpu |
|
|
|
|
|
def _run_single_frame_inference_embed( |
|
self, |
|
inference_state, |
|
output_dict, |
|
frame_idx, |
|
batch_size, |
|
is_init_cond_frame, |
|
box_embed, |
|
point_inputs, |
|
mask_inputs, |
|
reverse, |
|
run_mem_encoder, |
|
prev_sam_mask_logits=None, |
|
): |
|
"""Run tracking on a single frame based on current inputs and previous memory.""" |
|
|
|
( |
|
_, |
|
_, |
|
current_vision_feats, |
|
current_vision_pos_embeds, |
|
feat_sizes, |
|
) = self._get_image_feature(inference_state, frame_idx, batch_size) |
|
|
|
|
|
assert point_inputs is None or mask_inputs is None |
|
current_out = self.track_step_embed( |
|
frame_idx=frame_idx, |
|
is_init_cond_frame=is_init_cond_frame, |
|
current_vision_feats=current_vision_feats, |
|
current_vision_pos_embeds=current_vision_pos_embeds, |
|
feat_sizes=feat_sizes, |
|
box_embed=box_embed, |
|
point_inputs=point_inputs, |
|
mask_inputs=mask_inputs, |
|
output_dict=output_dict, |
|
num_frames=inference_state["num_frames"], |
|
track_in_reverse=reverse, |
|
run_mem_encoder=run_mem_encoder, |
|
prev_sam_mask_logits=prev_sam_mask_logits, |
|
) |
|
|
|
|
|
storage_device = inference_state["storage_device"] |
|
maskmem_features = current_out["maskmem_features"] |
|
if maskmem_features is not None: |
|
maskmem_features = maskmem_features.to(torch.bfloat16) |
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True) |
|
pred_masks_gpu = current_out["pred_masks"] |
|
|
|
if self.fill_hole_area > 0: |
|
pred_masks_gpu = fill_holes_in_mask_scores( |
|
pred_masks_gpu, self.fill_hole_area |
|
) |
|
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) |
|
|
|
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) |
|
|
|
obj_ptr = current_out["obj_ptr"] |
|
|
|
compact_current_out = { |
|
"maskmem_features": maskmem_features, |
|
"maskmem_pos_enc": maskmem_pos_enc, |
|
"pred_masks": pred_masks, |
|
"obj_ptr": obj_ptr, |
|
} |
|
return compact_current_out, pred_masks_gpu |
|
|
|
|
|
def _run_memory_encoder( |
|
self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts |
|
): |
|
""" |
|
Run the memory encoder on `high_res_masks`. This is usually after applying |
|
non-overlapping constraints to object scores. Since their scores changed, their |
|
memory also need to be computed again with the memory encoder. |
|
""" |
|
|
|
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature( |
|
inference_state, frame_idx, batch_size |
|
) |
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory( |
|
current_vision_feats=current_vision_feats, |
|
feat_sizes=feat_sizes, |
|
pred_masks_high_res=high_res_masks, |
|
is_mask_from_pts=is_mask_from_pts, |
|
) |
|
|
|
|
|
storage_device = inference_state["storage_device"] |
|
maskmem_features = maskmem_features.to(torch.bfloat16) |
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True) |
|
|
|
maskmem_pos_enc = self._get_maskmem_pos_enc( |
|
inference_state, {"maskmem_pos_enc": maskmem_pos_enc} |
|
) |
|
return maskmem_features, maskmem_pos_enc |
|
|
|
def _get_maskmem_pos_enc(self, inference_state, current_out): |
|
""" |
|
`maskmem_pos_enc` is the same across frames and objects, so we cache it as |
|
a constant in the inference session to reduce session storage size. |
|
""" |
|
model_constants = inference_state["constants"] |
|
|
|
out_maskmem_pos_enc = current_out["maskmem_pos_enc"] |
|
if out_maskmem_pos_enc is not None: |
|
if "maskmem_pos_enc" not in model_constants: |
|
assert isinstance(out_maskmem_pos_enc, list) |
|
|
|
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] |
|
model_constants["maskmem_pos_enc"] = maskmem_pos_enc |
|
else: |
|
maskmem_pos_enc = model_constants["maskmem_pos_enc"] |
|
|
|
batch_size = out_maskmem_pos_enc[0].size(0) |
|
expanded_maskmem_pos_enc = [ |
|
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc |
|
] |
|
else: |
|
expanded_maskmem_pos_enc = None |
|
return expanded_maskmem_pos_enc |
|
|
|
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): |
|
""" |
|
Remove the non-conditioning memory around the input frame. When users provide |
|
correction clicks, the surrounding frames' non-conditioning memories can still |
|
contain outdated object appearance information and could confuse the model. |
|
|
|
This method clears those non-conditioning memories surrounding the interacted |
|
frame to avoid giving the model both old and new information about the object. |
|
""" |
|
r = self.memory_temporal_stride_for_eval |
|
frame_idx_begin = frame_idx - r * self.num_maskmem |
|
frame_idx_end = frame_idx + r * self.num_maskmem |
|
output_dict = inference_state["output_dict"] |
|
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] |
|
for t in range(frame_idx_begin, frame_idx_end + 1): |
|
non_cond_frame_outputs.pop(t, None) |
|
for obj_output_dict in inference_state["output_dict_per_obj"].values(): |
|
obj_output_dict["non_cond_frame_outputs"].pop(t, None) |
|
|