# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import warnings from collections import OrderedDict import torch from tqdm import tqdm from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames class SAM2VideoPredictor(SAM2Base): """The predictor class to handle user interactions and manage inference states.""" def __init__( self, fill_hole_area=0, # whether to apply non-overlapping constraints on the output object masks non_overlap_masks=False, # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks; # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True) clear_non_cond_mem_around_input=False, # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True). clear_non_cond_mem_for_multi_obj=False, **kwargs, ): super().__init__(**kwargs) self.fill_hole_area = fill_hole_area self.non_overlap_masks = non_overlap_masks self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj @torch.inference_mode() def init_state( self, video_path, offload_video_to_cpu=False, offload_state_to_cpu=False, async_loading_frames=False, ): """Initialize an inference state.""" compute_device = self.device # device of the model images, video_height, video_width = load_video_frames( video_path=video_path, image_size=self.image_size, offload_video_to_cpu=offload_video_to_cpu, async_loading_frames=async_loading_frames, compute_device=compute_device, ) inference_state = {} inference_state["images"] = images inference_state["num_frames"] = len(images) # whether to offload the video frames to CPU memory # turning on this option saves the GPU memory with only a very small overhead inference_state["offload_video_to_cpu"] = offload_video_to_cpu # whether to offload the inference state to CPU memory # turning on this option saves the GPU memory at the cost of a lower tracking fps # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object # and from 24 to 21 when tracking two objects) inference_state["offload_state_to_cpu"] = offload_state_to_cpu # the original video height and width, used for resizing final output scores inference_state["video_height"] = video_height inference_state["video_width"] = video_width inference_state["device"] = compute_device if offload_state_to_cpu: inference_state["storage_device"] = torch.device("cpu") else: inference_state["storage_device"] = compute_device # inputs on each frame inference_state["point_inputs_per_obj"] = {} inference_state["mask_inputs_per_obj"] = {} # visual features on a small number of recently visited frames for quick interactions inference_state["cached_features"] = {} # values that don't change across frames (so we only need to hold one copy of them) inference_state["constants"] = {} # mapping between client-side object id and model-side object index inference_state["obj_id_to_idx"] = OrderedDict() inference_state["obj_idx_to_id"] = OrderedDict() inference_state["obj_ids"] = [] # A storage to hold the model's tracking results and states on each frame inference_state["output_dict"] = { "cond_frame_outputs": {}, # dict containing {frame_idx: } "non_cond_frame_outputs": {}, # dict containing {frame_idx: } } # Slice (view) of each object tracking results, sharing the same memory with "output_dict" inference_state["output_dict_per_obj"] = {} # A temporary storage to hold new outputs when user interact with a frame # to add clicks or mask (it's merged into "output_dict" before propagation starts) inference_state["temp_output_dict_per_obj"] = {} # Frames that already holds consolidated outputs from click or mask inputs # (we directly use their consolidated outputs during tracking) inference_state["consolidated_frame_inds"] = { "cond_frame_outputs": set(), # set containing frame indices "non_cond_frame_outputs": set(), # set containing frame indices } # metadata for each tracking frame (e.g. which direction it's tracked) inference_state["tracking_has_started"] = False inference_state["frames_already_tracked"] = {} # Warm up the visual backbone and cache the image feature on frame 0 self._get_image_feature(inference_state, frame_idx=0, batch_size=1) return inference_state def init_state_images( self, images, video_height, video_width, offload_video_to_cpu=False, offload_state_to_cpu=False, async_loading_frames=False, ): """Initialize an inference state.""" compute_device = self.device # device of the model # images, video_height, video_width = load_video_frames( # video_path=video_path, # image_size=self.image_size, # offload_video_to_cpu=offload_video_to_cpu, # async_loading_frames=async_loading_frames, # compute_device=compute_device, # ) inference_state = {} inference_state["images"] = images[0] inference_state["num_frames"] = len(images[0]) # whether to offload the video frames to CPU memory # turning on this option saves the GPU memory with only a very small overhead inference_state["offload_video_to_cpu"] = offload_video_to_cpu # whether to offload the inference state to CPU memory # turning on this option saves the GPU memory at the cost of a lower tracking fps # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object # and from 24 to 21 when tracking two objects) inference_state["offload_state_to_cpu"] = offload_state_to_cpu # the original video height and width, used for resizing final output scores inference_state["video_height"] = video_height inference_state["video_width"] = video_width inference_state["device"] = compute_device if offload_state_to_cpu: inference_state["storage_device"] = torch.device("cpu") else: inference_state["storage_device"] = compute_device # inputs on each frame inference_state["point_inputs_per_obj"] = {} inference_state["mask_inputs_per_obj"] = {} # visual features on a small number of recently visited frames for quick interactions inference_state["cached_features"] = {} # values that don't change across frames (so we only need to hold one copy of them) inference_state["constants"] = {} # mapping between client-side object id and model-side object index inference_state["obj_id_to_idx"] = OrderedDict() inference_state["obj_idx_to_id"] = OrderedDict() inference_state["obj_ids"] = [] # A storage to hold the model's tracking results and states on each frame inference_state["output_dict"] = { "cond_frame_outputs": {}, # dict containing {frame_idx: } "non_cond_frame_outputs": {}, # dict containing {frame_idx: } } # Slice (view) of each object tracking results, sharing the same memory with "output_dict" inference_state["output_dict_per_obj"] = {} # A temporary storage to hold new outputs when user interact with a frame # to add clicks or mask (it's merged into "output_dict" before propagation starts) inference_state["temp_output_dict_per_obj"] = {} # Frames that already holds consolidated outputs from click or mask inputs # (we directly use their consolidated outputs during tracking) inference_state["consolidated_frame_inds"] = { "cond_frame_outputs": set(), # set containing frame indices "non_cond_frame_outputs": set(), # set containing frame indices } # metadata for each tracking frame (e.g. which direction it's tracked) inference_state["tracking_has_started"] = False inference_state["frames_already_tracked"] = {} # Warm up the visual backbone and cache the image feature on frame 0 self._get_image_feature(inference_state, frame_idx=0, batch_size=1) return inference_state @classmethod def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor": """ Load a pretrained model from the Hugging Face hub. Arguments: model_id (str): The Hugging Face repository ID. **kwargs: Additional arguments to pass to the model constructor. Returns: (SAM2VideoPredictor): The loaded model. """ from sam2.build_sam import build_sam2_video_predictor_hf sam_model = build_sam2_video_predictor_hf(model_id, **kwargs) return sam_model def _obj_id_to_idx(self, inference_state, obj_id): """Map client-side object id to model-side object index.""" obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) if obj_idx is not None: return obj_idx # This is a new object id not sent to the server before. We only allow adding # new objects *before* the tracking starts. allow_new_object = not inference_state["tracking_has_started"] if allow_new_object: # get the next object slot obj_idx = len(inference_state["obj_id_to_idx"]) inference_state["obj_id_to_idx"][obj_id] = obj_idx inference_state["obj_idx_to_id"][obj_idx] = obj_id inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) # set up input and output structures for this object inference_state["point_inputs_per_obj"][obj_idx] = {} inference_state["mask_inputs_per_obj"][obj_idx] = {} inference_state["output_dict_per_obj"][obj_idx] = { "cond_frame_outputs": {}, # dict containing {frame_idx: } "non_cond_frame_outputs": {}, # dict containing {frame_idx: } } inference_state["temp_output_dict_per_obj"][obj_idx] = { "cond_frame_outputs": {}, # dict containing {frame_idx: } "non_cond_frame_outputs": {}, # dict containing {frame_idx: } } return obj_idx else: raise RuntimeError( f"Cannot add new object id {obj_id} after tracking starts. " f"All existing object ids: {inference_state['obj_ids']}. " f"Please call 'reset_state' to restart from scratch." ) def _obj_idx_to_id(self, inference_state, obj_idx): """Map model-side object index to client-side object id.""" return inference_state["obj_idx_to_id"][obj_idx] def _get_obj_num(self, inference_state): """Get the total number of unique object ids received so far in this session.""" return len(inference_state["obj_idx_to_id"]) @torch.inference_mode() def add_new_points_or_box( self, inference_state, frame_idx, obj_id, points=None, labels=None, clear_old_points=True, normalize_coords=True, box=None, ): """Add new points to a frame.""" obj_idx = self._obj_id_to_idx(inference_state, obj_id) point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] if (points is not None) != (labels is not None): raise ValueError("points and labels must be provided together") if points is None and box is None: raise ValueError("at least one of points or box must be provided as input") if points is None: points = torch.zeros(0, 2, dtype=torch.bfloat16) elif not isinstance(points, torch.Tensor): points = torch.tensor(points, dtype=torch.bfloat16) if labels is None: labels = torch.zeros(0, dtype=torch.int32) elif not isinstance(labels, torch.Tensor): labels = torch.tensor(labels, dtype=torch.int32) if points.dim() == 2: points = points.unsqueeze(0) # add batch dimension if labels.dim() == 1: labels = labels.unsqueeze(0) # add batch dimension # If `box` is provided, we add it as the first two points with labels 2 and 3 # along with the user-provided points (consistent with how SAM 2 is trained). if box is not None: if not clear_old_points: raise ValueError( "cannot add box without clearing old points, since " "box prompt must be provided before any point prompt " "(please use clear_old_points=True instead)" ) if inference_state["tracking_has_started"]: warnings.warn( "You are adding a box after tracking starts. SAM 2 may not always be " "able to incorporate a box prompt for *refinement*. If you intend to " "use box prompt as an *initial* input before tracking, please call " "'reset_state' on the inference state to restart from scratch.", category=UserWarning, stacklevel=2, ) if not isinstance(box, torch.Tensor): box = torch.tensor(box, dtype=torch.bfloat16, device=points.device) box_coords = box.reshape(1, 2, 2) box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) box_labels = box_labels.reshape(1, 2) points = torch.cat([box_coords, points], dim=1) labels = torch.cat([box_labels, labels], dim=1) # print(f'boxes_points:{points, labels}') if normalize_coords: video_H = inference_state["video_height"] video_W = inference_state["video_width"] points = points / torch.tensor([video_W, video_H]).to(points.device) # scale the (normalized) coordinates by the model's internal image size points = points * self.image_size points = points.to(inference_state["device"]) labels = labels.to(inference_state["device"]) if not clear_old_points: point_inputs = point_inputs_per_frame.get(frame_idx, None) else: point_inputs = None point_inputs = concat_points(point_inputs, points, labels) point_inputs_per_frame[frame_idx] = point_inputs mask_inputs_per_frame.pop(frame_idx, None) # If this frame hasn't been tracked before, we treat it as an initial conditioning # frame, meaning that the inputs points are to generate segments on this frame without # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), # the input points will be used to correct the already tracked masks. is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] # whether to track in reverse time order if is_init_cond_frame: reverse = False else: reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] # Add a frame to conditioning output if it's an initial conditioning frame or # if the model sees all frames receiving clicks/mask as conditioning frames. is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" # Get any previously predicted mask logits on this object and feed it along with # the new clicks into the SAM mask decoder. prev_sam_mask_logits = None # lookup temporary output dict first, which contains the most recent output # (if not found, then lookup conditioning and non-conditioning frame output) prev_out = obj_temp_output_dict[storage_key].get(frame_idx) if prev_out is None: prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) if prev_out is None: prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) if prev_out is not None and prev_out["pred_masks"] is not None: device = inference_state["device"] prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True) # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) current_out, _ = self._run_single_frame_inference( inference_state=inference_state, output_dict=obj_output_dict, # run on the slice of a single object frame_idx=frame_idx, batch_size=1, # run on the slice of a single object is_init_cond_frame=is_init_cond_frame, point_inputs=point_inputs, mask_inputs=None, reverse=reverse, # Skip the memory encoder when adding clicks or mask. We execute the memory encoder # at the beginning of `propagate_in_video` (after user finalize their clicks). This # allows us to enforce non-overlapping constraints on all objects before encoding # them into memory. run_mem_encoder=False, prev_sam_mask_logits=prev_sam_mask_logits, ) # Add the output to the output dict (to be used as future memory) obj_temp_output_dict[storage_key][frame_idx] = current_out # Resize the output mask to the original video resolution obj_ids = inference_state["obj_ids"] consolidated_out = self._consolidate_temp_output_across_obj( inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True, ) _, video_res_masks = self._get_orig_video_res_output( inference_state, consolidated_out["pred_masks_video_res"] ) return frame_idx, obj_ids, video_res_masks @torch.inference_mode() def add_new_box_embeding( self, inference_state, frame_idx, obj_id, box_embeding = None, points=None, labels=None, clear_old_points=True, normalize_coords=True, box=None, ): """Add new points to a frame.""" obj_idx = self._obj_id_to_idx(inference_state, obj_id) point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] if (points is not None) != (labels is not None): raise ValueError("points and labels must be provided together") if points is None and box is None: raise ValueError("at least one of points or box must be provided as input") if points is None: points = torch.zeros(0, 2, dtype=torch.bfloat16) elif not isinstance(points, torch.Tensor): points = torch.tensor(points, dtype=torch.bfloat16) if labels is None: labels = torch.zeros(0, dtype=torch.int32) elif not isinstance(labels, torch.Tensor): labels = torch.tensor(labels, dtype=torch.int32) if points.dim() == 2: points = points.unsqueeze(0) # add batch dimension if labels.dim() == 1: labels = labels.unsqueeze(0) # add batch dimension # If `box` is provided, we add it as the first two points with labels 2 and 3 # along with the user-provided points (consistent with how SAM 2 is trained). if box is not None: if not clear_old_points: raise ValueError( "cannot add box without clearing old points, since " "box prompt must be provided before any point prompt " "(please use clear_old_points=True instead)" ) if inference_state["tracking_has_started"]: warnings.warn( "You are adding a box after tracking starts. SAM 2 may not always be " "able to incorporate a box prompt for *refinement*. If you intend to " "use box prompt as an *initial* input before tracking, please call " "'reset_state' on the inference state to restart from scratch.", category=UserWarning, stacklevel=2, ) if not isinstance(box, torch.Tensor): box = torch.tensor(box, dtype=torch.bfloat16, device=points.device) box_coords = box.reshape(1, 2, 2) box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) box_labels = box_labels.reshape(1, 2) points = torch.cat([box_coords, points], dim=1) labels = torch.cat([box_labels, labels], dim=1) if normalize_coords: video_H = inference_state["video_height"] video_W = inference_state["video_width"] points = points / torch.tensor([video_W, video_H]).to(points.device) # scale the (normalized) coordinates by the model's internal image size points = points * self.image_size points = points.to(inference_state["device"]) labels = labels.to(inference_state["device"]) if not clear_old_points: point_inputs = point_inputs_per_frame.get(frame_idx, None) else: point_inputs = None point_inputs = concat_points(point_inputs, points, labels) point_inputs_per_frame[frame_idx] = point_inputs mask_inputs_per_frame.pop(frame_idx, None) # If this frame hasn't been tracked before, we treat it as an initial conditioning # frame, meaning that the inputs points are to generate segments on this frame without # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), # the input points will be used to correct the already tracked masks. is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] # whether to track in reverse time order if is_init_cond_frame: reverse = False else: reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] # Add a frame to conditioning output if it's an initial conditioning frame or # if the model sees all frames receiving clicks/mask as conditioning frames. is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" # Get any previously predicted mask logits on this object and feed it along with # the new clicks into the SAM mask decoder. prev_sam_mask_logits = None # lookup temporary output dict first, which contains the most recent output # (if not found, then lookup conditioning and non-conditioning frame output) prev_out = obj_temp_output_dict[storage_key].get(frame_idx) if prev_out is None: prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) if prev_out is None: prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) if prev_out is not None and prev_out["pred_masks"] is not None: device = inference_state["device"] prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True) # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) current_out, _ = self._run_single_frame_inference_embed( inference_state=inference_state, output_dict=obj_output_dict, # run on the slice of a single object frame_idx=frame_idx, batch_size=1, # run on the slice of a single object is_init_cond_frame=is_init_cond_frame, box_embed=box_embeding, point_inputs=point_inputs, mask_inputs=None, reverse=reverse, # Skip the memory encoder when adding clicks or mask. We execute the memory encoder # at the beginning of `propagate_in_video` (after user finalize their clicks). This # allows us to enforce non-overlapping constraints on all objects before encoding # them into memory. run_mem_encoder=False, prev_sam_mask_logits=prev_sam_mask_logits, ) # Add the output to the output dict (to be used as future memory) obj_temp_output_dict[storage_key][frame_idx] = current_out # Resize the output mask to the original video resolution obj_ids = inference_state["obj_ids"] consolidated_out = self._consolidate_temp_output_across_obj( inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True, ) _, video_res_masks = self._get_orig_video_res_output( inference_state, consolidated_out["pred_masks_video_res"] ) return frame_idx, obj_ids, video_res_masks def get_prompt_embeding( self, inference_state, points=None, labels=None, normalize_coords=False, box=None, device = None ): if not isinstance(box, torch.Tensor): box = torch.tensor(box, dtype=torch.bfloat16, device=device) box_coords = box.reshape(1, 2, 2) box_labels = torch.tensor([2, 3], dtype=torch.int32, device=device) box_labels = box_labels.reshape(1, 2) if points is None: points = torch.zeros(0, 2, dtype=torch.bfloat16, device=device) labels = torch.zeros(0, dtype=torch.int32, device=device) if points.dim() == 2: points = points.unsqueeze(0) # add batch dimension if labels.dim() == 1: labels = labels.unsqueeze(0) # add batch dimension points = torch.cat([box_coords, points], dim=1) labels = torch.cat([box_labels, labels], dim=1) if normalize_coords: video_H = inference_state["video_height"] video_W = inference_state["video_width"] points = points / torch.tensor([video_W, video_H]).to(points.device) # scale the (normalized) coordinates by the model's internal image size points = points * self.image_size points = points.to(inference_state["device"]) labels = labels.to(inference_state["device"]) point_inputs = concat_points(None, points, labels) sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( points=(point_inputs['point_coords'], point_inputs['point_labels']), boxes=None, masks=None, ) return sparse_embeddings def add_new_points(self, *args, **kwargs): """Deprecated method. Please use `add_new_points_or_box` instead.""" return self.add_new_points_or_box(*args, **kwargs) @torch.inference_mode() def add_new_mask( self, inference_state, frame_idx, obj_id, mask, ): """Add new mask to a frame.""" obj_idx = self._obj_id_to_idx(inference_state, obj_id) point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] if not isinstance(mask, torch.Tensor): mask = torch.tensor(mask, dtype=torch.bool) assert mask.dim() == 2 mask_H, mask_W = mask.shape mask_inputs_orig = mask[None, None] # add batch and channel dimension mask_inputs_orig = mask_inputs_orig.to(inference_state["device"]) # resize the mask if it doesn't match the model's image size if mask_H != self.image_size or mask_W != self.image_size: mask_inputs = torch.nn.functional.interpolate( mask_inputs_orig, size=(self.image_size, self.image_size), align_corners=False, mode="bilinear", antialias=True, # use antialias for downsampling ) mask_inputs = (mask_inputs >= 0.5) else: mask_inputs = mask_inputs_orig mask_inputs_per_frame[frame_idx] = mask_inputs point_inputs_per_frame.pop(frame_idx, None) # If this frame hasn't been tracked before, we treat it as an initial conditioning # frame, meaning that the inputs points are to generate segments on this frame without # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), # the input points will be used to correct the already tracked masks. is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] # whether to track in reverse time order if is_init_cond_frame: reverse = False else: reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] # Add a frame to conditioning output if it's an initial conditioning frame or # if the model sees all frames receiving clicks/mask as conditioning frames. is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" current_out, _ = self._run_single_frame_inference( inference_state=inference_state, output_dict=obj_output_dict, # run on the slice of a single object frame_idx=frame_idx, batch_size=1, # run on the slice of a single object is_init_cond_frame=is_init_cond_frame, point_inputs=None, mask_inputs=mask_inputs, reverse=reverse, # Skip the memory encoder when adding clicks or mask. We execute the memory encoder # at the beginning of `propagate_in_video` (after user finalize their clicks). This # allows us to enforce non-overlapping constraints on all objects before encoding # them into memory. run_mem_encoder=False, ) # Add the output to the output dict (to be used as future memory) obj_temp_output_dict[storage_key][frame_idx] = current_out # Resize the output mask to the original video resolution obj_ids = inference_state["obj_ids"] consolidated_out = self._consolidate_temp_output_across_obj( inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True, ) _, video_res_masks = self._get_orig_video_res_output( inference_state, consolidated_out["pred_masks_video_res"] ) return frame_idx, obj_ids, video_res_masks def _get_orig_video_res_output(self, inference_state, any_res_masks): """ Resize the object scores to the original video resolution (video_res_masks) and apply non-overlapping constraints for final output. """ device = inference_state["device"] video_H = inference_state["video_height"] video_W = inference_state["video_width"] any_res_masks = any_res_masks.to(device, non_blocking=True) if any_res_masks.shape[-2:] == (video_H, video_W): video_res_masks = any_res_masks else: video_res_masks = torch.nn.functional.interpolate( any_res_masks, size=(video_H, video_W), mode="bilinear", align_corners=False, ) if self.non_overlap_masks: video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) return any_res_masks, video_res_masks def _consolidate_temp_output_across_obj( self, inference_state, frame_idx, is_cond, run_mem_encoder, consolidate_at_video_res=False, ): """ Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on a frame into a single output for all objects, including 1) fill any missing objects either from `output_dict_per_obj` (if they exist in `output_dict_per_obj` for this frame) or leave them as placeholder values (if they don't exist in `output_dict_per_obj` for this frame); 2) if specified, rerun memory encoder after apply non-overlapping constraints on the object scores. """ batch_size = self._get_obj_num(inference_state) storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" # Optionally, we allow consolidating the temporary outputs at the original # video resolution (to provide a better editing experience for mask prompts). if consolidate_at_video_res: assert not run_mem_encoder, "memory encoder cannot run at video resolution" consolidated_H = inference_state["video_height"] consolidated_W = inference_state["video_width"] consolidated_mask_key = "pred_masks_video_res" else: consolidated_H = consolidated_W = self.image_size // 4 consolidated_mask_key = "pred_masks" # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc" # will be added when rerunning the memory encoder after applying non-overlapping # constraints to object scores. Its "pred_masks" are prefilled with a large # negative value (NO_OBJ_SCORE) to represent missing objects. consolidated_out = { "maskmem_features": None, "maskmem_pos_enc": None, consolidated_mask_key: torch.full( size=(batch_size, 1, consolidated_H, consolidated_W), fill_value=NO_OBJ_SCORE, dtype=torch.bfloat16, device=inference_state["storage_device"], ), "obj_ptr": torch.full( size=(batch_size, self.hidden_dim), fill_value=NO_OBJ_SCORE, dtype=torch.bfloat16, device=inference_state["device"], ), } empty_mask_ptr = None for obj_idx in range(batch_size): obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] out = obj_temp_output_dict[storage_key].get(frame_idx, None) # If the object doesn't appear in "temp_output_dict_per_obj" on this frame, # we fall back and look up its previous output in "output_dict_per_obj". # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in # "output_dict_per_obj" to find a previous output for this object. if out is None: out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) if out is None: out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) # If the object doesn't appear in "output_dict_per_obj" either, we skip it # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE # placeholder above) and set its object pointer to be a dummy pointer. if out is None: # Fill in dummy object pointers for those objects without any inputs or # tracking outcomes on this frame (only do it under `run_mem_encoder=True`, # i.e. when we need to build the memory for tracking). if run_mem_encoder: if empty_mask_ptr is None: empty_mask_ptr = self._get_empty_mask_ptr( inference_state, frame_idx ) # fill object pointer with a dummy pointer (based on an empty mask) consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr continue # Add the temporary object output mask to consolidated output mask obj_mask = out["pred_masks"] consolidated_pred_masks = consolidated_out[consolidated_mask_key] if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask else: # Resize first if temporary object mask has a different resolution resized_obj_mask = torch.nn.functional.interpolate( obj_mask, size=consolidated_pred_masks.shape[-2:], mode="bilinear", align_corners=False, ) consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] # Optionally, apply non-overlapping constraints on the consolidated scores # and rerun the memory encoder if run_mem_encoder: device = inference_state["device"] high_res_masks = torch.nn.functional.interpolate( consolidated_out["pred_masks"].to(device, non_blocking=True), size=(self.image_size, self.image_size), mode="bilinear", align_corners=False, ) if self.non_overlap_masks_for_mem_enc: high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) maskmem_features, maskmem_pos_enc = self._run_memory_encoder( inference_state=inference_state, frame_idx=frame_idx, batch_size=batch_size, high_res_masks=high_res_masks, is_mask_from_pts=True, # these frames are what the user interacted with ) consolidated_out["maskmem_features"] = maskmem_features consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc return consolidated_out def _get_empty_mask_ptr(self, inference_state, frame_idx): """Get a dummy object pointer based on an empty mask on the current frame.""" # A dummy (empty) mask with a single object batch_size = 1 mask_inputs = torch.zeros( (batch_size, 1, self.image_size, self.image_size), dtype=torch.bfloat16, device=inference_state["device"], ) # Retrieve correct image features ( _, _, current_vision_feats, current_vision_pos_embeds, feat_sizes, ) = self._get_image_feature(inference_state, frame_idx, batch_size) # Feed the empty mask and image feature above to get a dummy object pointer current_out = self.track_step( frame_idx=frame_idx, is_init_cond_frame=True, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=None, mask_inputs=mask_inputs, output_dict={}, num_frames=inference_state["num_frames"], track_in_reverse=False, run_mem_encoder=False, prev_sam_mask_logits=None, ) return current_out["obj_ptr"] @torch.inference_mode() def propagate_in_video_preflight(self, inference_state): """Prepare inference_state and consolidate temporary outputs before tracking.""" # Tracking has started and we don't allow adding new objects until session is reset. inference_state["tracking_has_started"] = True batch_size = self._get_obj_num(inference_state) # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and # add them into "output_dict". temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] output_dict = inference_state["output_dict"] # "consolidated_frame_inds" contains indices of those frames where consolidated # temporary outputs have been added (either in this call or any previous calls # to `propagate_in_video_preflight`). consolidated_frame_inds = inference_state["consolidated_frame_inds"] for is_cond in [False, True]: # Separately consolidate conditioning and non-conditioning temp outputs storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" # Find all the frames that contain temporary outputs for any objects # (these should be the frames that have just received clicks for mask inputs # via `add_new_points_or_box` or `add_new_mask`) temp_frame_inds = set() for obj_temp_output_dict in temp_output_dict_per_obj.values(): temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) consolidated_frame_inds[storage_key].update(temp_frame_inds) # consolidate the temporary output across all objects on this frame for frame_idx in temp_frame_inds: consolidated_out = self._consolidate_temp_output_across_obj( inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True ) # merge them into "output_dict" and also create per-object slices output_dict[storage_key][frame_idx] = consolidated_out self._add_output_per_object( inference_state, frame_idx, consolidated_out, storage_key ) clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 ) if clear_non_cond_mem: # clear non-conditioning memory of the surrounding frames self._clear_non_cond_mem_around_input(inference_state, frame_idx) # clear temporary outputs in `temp_output_dict_per_obj` for obj_temp_output_dict in temp_output_dict_per_obj.values(): obj_temp_output_dict[storage_key].clear() # edge case: if an output is added to "cond_frame_outputs", we remove any prior # output on the same frame in "non_cond_frame_outputs" for frame_idx in output_dict["cond_frame_outputs"]: output_dict["non_cond_frame_outputs"].pop(frame_idx, None) for obj_output_dict in inference_state["output_dict_per_obj"].values(): for frame_idx in obj_output_dict["cond_frame_outputs"]: obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: assert frame_idx in output_dict["cond_frame_outputs"] consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames # with either points or mask inputs (which should be true under a correct workflow). all_consolidated_frame_inds = ( consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"] ) input_frames_inds = set() for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): input_frames_inds.update(point_inputs_per_frame.keys()) for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): input_frames_inds.update(mask_inputs_per_frame.keys()) assert all_consolidated_frame_inds == input_frames_inds @torch.inference_mode() def propagate_in_video( self, inference_state, start_frame_idx=None, max_frame_num_to_track=None, reverse=False, ): """Propagate the input points across frames to track in the entire video.""" self.propagate_in_video_preflight(inference_state) output_dict = inference_state["output_dict"] consolidated_frame_inds = inference_state["consolidated_frame_inds"] obj_ids = inference_state["obj_ids"] num_frames = inference_state["num_frames"] batch_size = self._get_obj_num(inference_state) if len(output_dict["cond_frame_outputs"]) == 0: raise RuntimeError("No points are provided; please add points first") clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 ) # set start index, end index, and processing order if start_frame_idx is None: # default: start from the earliest frame with input points start_frame_idx = min(output_dict["cond_frame_outputs"]) if max_frame_num_to_track is None: # default: track all the frames in the video max_frame_num_to_track = num_frames if reverse: end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) if start_frame_idx > 0: processing_order = range(start_frame_idx, end_frame_idx - 1, -1) else: processing_order = [] # skip reverse tracking if starting from frame 0 else: end_frame_idx = min( start_frame_idx + max_frame_num_to_track, num_frames - 1 ) processing_order = range(start_frame_idx, end_frame_idx + 1) for frame_idx in tqdm(processing_order, desc="propagate in video"): # We skip those frames already in consolidated outputs (these are frames # that received input clicks or mask). Note that we cannot directly run # batched forward on them via `_run_single_frame_inference` because the # number of clicks on each object might be different. if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: storage_key = "cond_frame_outputs" current_out = output_dict[storage_key][frame_idx] pred_masks = current_out["pred_masks"] if clear_non_cond_mem: # clear non-conditioning memory of the surrounding frames self._clear_non_cond_mem_around_input(inference_state, frame_idx) elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: storage_key = "non_cond_frame_outputs" current_out = output_dict[storage_key][frame_idx] pred_masks = current_out["pred_masks"] else: storage_key = "non_cond_frame_outputs" current_out, pred_masks = self._run_single_frame_inference( inference_state=inference_state, output_dict=output_dict, frame_idx=frame_idx, batch_size=batch_size, is_init_cond_frame=False, point_inputs=None, mask_inputs=None, reverse=reverse, run_mem_encoder=True, ) output_dict[storage_key][frame_idx] = current_out # Create slices of per-object outputs for subsequent interaction with each # individual object after tracking. self._add_output_per_object( inference_state, frame_idx, current_out, storage_key ) inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} # Resize the output mask to the original video resolution (we directly use # the mask scores on GPU for output to avoid any CPU conversion in between) _, video_res_masks = self._get_orig_video_res_output( inference_state, pred_masks ) yield frame_idx, obj_ids, video_res_masks def _add_output_per_object( self, inference_state, frame_idx, current_out, storage_key ): """ Split a multi-object output into per-object output slices and add them into `output_dict_per_obj`. The resulting slices share the same tensor storage. """ maskmem_features = current_out["maskmem_features"] assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) maskmem_pos_enc = current_out["maskmem_pos_enc"] assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) output_dict_per_obj = inference_state["output_dict_per_obj"] for obj_idx, obj_output_dict in output_dict_per_obj.items(): obj_slice = slice(obj_idx, obj_idx + 1) obj_out = { "maskmem_features": None, "maskmem_pos_enc": None, "pred_masks": current_out["pred_masks"][obj_slice], "obj_ptr": current_out["obj_ptr"][obj_slice], } if maskmem_features is not None: obj_out["maskmem_features"] = maskmem_features[obj_slice] if maskmem_pos_enc is not None: obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] obj_output_dict[storage_key][frame_idx] = obj_out @torch.inference_mode() def reset_state(self, inference_state): """Remove all input points or mask in all frames throughout the video.""" self._reset_tracking_results(inference_state) # Remove all object ids inference_state["obj_id_to_idx"].clear() inference_state["obj_idx_to_id"].clear() inference_state["obj_ids"].clear() inference_state["point_inputs_per_obj"].clear() inference_state["mask_inputs_per_obj"].clear() inference_state["output_dict_per_obj"].clear() inference_state["temp_output_dict_per_obj"].clear() def _reset_tracking_results(self, inference_state): """Reset all tracking inputs and results across the videos.""" for v in inference_state["point_inputs_per_obj"].values(): v.clear() for v in inference_state["mask_inputs_per_obj"].values(): v.clear() for v in inference_state["output_dict_per_obj"].values(): v["cond_frame_outputs"].clear() v["non_cond_frame_outputs"].clear() for v in inference_state["temp_output_dict_per_obj"].values(): v["cond_frame_outputs"].clear() v["non_cond_frame_outputs"].clear() inference_state["output_dict"]["cond_frame_outputs"].clear() inference_state["output_dict"]["non_cond_frame_outputs"].clear() inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear() inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear() inference_state["tracking_has_started"] = False inference_state["frames_already_tracked"].clear() def _get_image_feature(self, inference_state, frame_idx, batch_size): """Compute the image features on a given frame.""" # Look up in the cache first image, backbone_out = inference_state["cached_features"].get( frame_idx, (None, None) ) if backbone_out is None: # Cache miss -- we will run inference on a single image device = inference_state["device"] # print(f'dtype image:{inference_state["images"][frame_idx].to(device).dtype}') # image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0) image = inference_state["images"][frame_idx].to(device).unsqueeze(0) # image = image[:1] backbone_out = self.forward_image(image) # Cache the most recent frame's feature (for repeated interactions with # a frame; we can use an LRU cache for more frames in the future). inference_state["cached_features"] = {frame_idx: (image, backbone_out)} # expand the features to have the same dimension as the number of objects expanded_image = image.expand(batch_size, -1, -1, -1) expanded_backbone_out = { "backbone_fpn": backbone_out["backbone_fpn"].copy(), "vision_pos_enc": backbone_out["vision_pos_enc"].copy(), } for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): expanded_backbone_out["backbone_fpn"][i] = feat.expand( batch_size, -1, -1, -1 ) for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): pos = pos.expand(batch_size, -1, -1, -1) expanded_backbone_out["vision_pos_enc"][i] = pos features = self._prepare_backbone_features(expanded_backbone_out) features = (expanded_image,) + features return features def _run_single_frame_inference( self, inference_state, output_dict, frame_idx, batch_size, is_init_cond_frame, point_inputs, mask_inputs, reverse, run_mem_encoder, prev_sam_mask_logits=None, ): """Run tracking on a single frame based on current inputs and previous memory.""" # Retrieve correct image features ( _, _, current_vision_feats, current_vision_pos_embeds, feat_sizes, ) = self._get_image_feature(inference_state, frame_idx, batch_size) # point and mask should not appear as input simultaneously on the same frame assert point_inputs is None or mask_inputs is None current_out = self.track_step( frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=point_inputs, mask_inputs=mask_inputs, output_dict=output_dict, num_frames=inference_state["num_frames"], track_in_reverse=reverse, run_mem_encoder=run_mem_encoder, prev_sam_mask_logits=prev_sam_mask_logits, ) # optionally offload the output to CPU memory to save GPU space storage_device = inference_state["storage_device"] maskmem_features = current_out["maskmem_features"] if maskmem_features is not None: maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) pred_masks_gpu = current_out["pred_masks"] # potentially fill holes in the predicted masks if self.fill_hole_area > 0: pred_masks_gpu = fill_holes_in_mask_scores( pred_masks_gpu, self.fill_hole_area ) pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) # object pointer is a small tensor, so we always keep it on GPU memory for fast access obj_ptr = current_out["obj_ptr"] # make a compact version of this frame's output to reduce the state size compact_current_out = { "maskmem_features": maskmem_features, "maskmem_pos_enc": maskmem_pos_enc, "pred_masks": pred_masks, "obj_ptr": obj_ptr, } return compact_current_out, pred_masks_gpu def _run_single_frame_inference_embed( self, inference_state, output_dict, frame_idx, batch_size, is_init_cond_frame, box_embed, point_inputs, mask_inputs, reverse, run_mem_encoder, prev_sam_mask_logits=None, ): """Run tracking on a single frame based on current inputs and previous memory.""" # Retrieve correct image features ( _, _, current_vision_feats, current_vision_pos_embeds, feat_sizes, ) = self._get_image_feature(inference_state, frame_idx, batch_size) # point and mask should not appear as input simultaneously on the same frame assert point_inputs is None or mask_inputs is None current_out = self.track_step_embed( frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, box_embed=box_embed, point_inputs=point_inputs, mask_inputs=mask_inputs, output_dict=output_dict, num_frames=inference_state["num_frames"], track_in_reverse=reverse, run_mem_encoder=run_mem_encoder, prev_sam_mask_logits=prev_sam_mask_logits, ) # optionally offload the output to CPU memory to save GPU space storage_device = inference_state["storage_device"] maskmem_features = current_out["maskmem_features"] if maskmem_features is not None: maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) pred_masks_gpu = current_out["pred_masks"] # potentially fill holes in the predicted masks if self.fill_hole_area > 0: pred_masks_gpu = fill_holes_in_mask_scores( pred_masks_gpu, self.fill_hole_area ) pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) # object pointer is a small tensor, so we always keep it on GPU memory for fast access obj_ptr = current_out["obj_ptr"] # make a compact version of this frame's output to reduce the state size compact_current_out = { "maskmem_features": maskmem_features, "maskmem_pos_enc": maskmem_pos_enc, "pred_masks": pred_masks, "obj_ptr": obj_ptr, } return compact_current_out, pred_masks_gpu def _run_memory_encoder( self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts ): """ Run the memory encoder on `high_res_masks`. This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their memory also need to be computed again with the memory encoder. """ # Retrieve correct image features _, _, current_vision_feats, _, feat_sizes = self._get_image_feature( inference_state, frame_idx, batch_size ) maskmem_features, maskmem_pos_enc = self._encode_new_memory( current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks, is_mask_from_pts=is_mask_from_pts, ) # optionally offload the output to CPU memory to save GPU space storage_device = inference_state["storage_device"] maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it maskmem_pos_enc = self._get_maskmem_pos_enc( inference_state, {"maskmem_pos_enc": maskmem_pos_enc} ) return maskmem_features, maskmem_pos_enc def _get_maskmem_pos_enc(self, inference_state, current_out): """ `maskmem_pos_enc` is the same across frames and objects, so we cache it as a constant in the inference session to reduce session storage size. """ model_constants = inference_state["constants"] # "out_maskmem_pos_enc" should be either a list of tensors or None out_maskmem_pos_enc = current_out["maskmem_pos_enc"] if out_maskmem_pos_enc is not None: if "maskmem_pos_enc" not in model_constants: assert isinstance(out_maskmem_pos_enc, list) # only take the slice for one object, since it's same across objects maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] model_constants["maskmem_pos_enc"] = maskmem_pos_enc else: maskmem_pos_enc = model_constants["maskmem_pos_enc"] # expand the cached maskmem_pos_enc to the actual batch size batch_size = out_maskmem_pos_enc[0].size(0) expanded_maskmem_pos_enc = [ x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc ] else: expanded_maskmem_pos_enc = None return expanded_maskmem_pos_enc def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): """ Remove the non-conditioning memory around the input frame. When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain outdated object appearance information and could confuse the model. This method clears those non-conditioning memories surrounding the interacted frame to avoid giving the model both old and new information about the object. """ r = self.memory_temporal_stride_for_eval frame_idx_begin = frame_idx - r * self.num_maskmem frame_idx_end = frame_idx + r * self.num_maskmem output_dict = inference_state["output_dict"] non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] for t in range(frame_idx_begin, frame_idx_end + 1): non_cond_frame_outputs.pop(t, None) for obj_output_dict in inference_state["output_dict_per_obj"].values(): obj_output_dict["non_cond_frame_outputs"].pop(t, None)