ynhe
init
16dc4f2
import numpy as np
from collections import OrderedDict, defaultdict
import json
import time
import copy
import multiprocessing as mp
from src.model.cgdetr_main.standalone_eval.utils import compute_average_precision_detection, \
compute_temporal_iou_batch_cross, compute_temporal_iou_batch_paired, load_jsonl, get_ap
def compute_average_precision_detection_wrapper(
input_triple, tiou_thresholds=np.linspace(0.5, 0.95, 10)):
qid, ground_truth, prediction = input_triple
scores = compute_average_precision_detection(
ground_truth, prediction, tiou_thresholds=tiou_thresholds)
return qid, scores
def compute_mr_ap(submission, ground_truth, iou_thds=np.linspace(0.5, 0.95, 10),
max_gt_windows=None, max_pred_windows=10, num_workers=8, chunksize=50):
iou_thds = [float(f"{e:.2f}") for e in iou_thds]
pred_qid2data = defaultdict(list)
for d in submission:
pred_windows = d["pred_relevant_windows"][:max_pred_windows] \
if max_pred_windows is not None else d["pred_relevant_windows"]
qid = d["qid"]
for w in pred_windows:
pred_qid2data[qid].append({
"video-id": d["qid"], # in order to use the API
"t-start": w[0],
"t-end": w[1],
"score": w[2]
})
gt_qid2data = defaultdict(list)
for d in ground_truth:
gt_windows = d["relevant_windows"][:max_gt_windows] \
if max_gt_windows is not None else d["relevant_windows"]
qid = d["qid"]
for w in gt_windows:
gt_qid2data[qid].append({
"video-id": d["qid"],
"t-start": w[0],
"t-end": w[1]
})
qid2ap_list = {}
# start_time = time.time()
data_triples = [[qid, gt_qid2data[qid], pred_qid2data[qid]] for qid in pred_qid2data]
from functools import partial
compute_ap_from_triple = partial(
compute_average_precision_detection_wrapper, tiou_thresholds=iou_thds)
if num_workers > 1:
with mp.Pool(num_workers) as pool:
for qid, scores in pool.imap_unordered(compute_ap_from_triple, data_triples, chunksize=chunksize):
qid2ap_list[qid] = scores
else:
for data_triple in data_triples:
qid, scores = compute_ap_from_triple(data_triple)
qid2ap_list[qid] = scores
# print(f"compute_average_precision_detection {time.time() - start_time:.2f} seconds.")
ap_array = np.array(list(qid2ap_list.values())) # (#queries, #thd)
ap_thds = ap_array.mean(0) # mAP at different IoU thresholds.
iou_thd2ap = dict(zip([str(e) for e in iou_thds], ap_thds))
iou_thd2ap["average"] = np.mean(ap_thds)
# formatting
iou_thd2ap = {k: float(f"{100 * v:.2f}") for k, v in iou_thd2ap.items()}
return iou_thd2ap
def compute_mr_r1(submission, ground_truth, iou_thds=np.linspace(0.3, 0.95, 14)):
"""If a predicted segment has IoU >= iou_thd with one of the 1st GT segment, we define it positive"""
iou_thds = [float(f"{e:.2f}") for e in iou_thds]
pred_qid2window = {d["qid"]: d["pred_relevant_windows"][0][:2] for d in submission} # :2 rm scores
# gt_qid2window = {d["qid"]: d["relevant_windows"][0] for d in ground_truth}
gt_qid2window = {}
for d in ground_truth:
cur_gt_windows = d["relevant_windows"]
cur_qid = d["qid"]
cur_max_iou_idx = 0
if len(cur_gt_windows) > 0: # select the GT window that has the highest IoU
cur_ious = compute_temporal_iou_batch_cross(
np.array([pred_qid2window[cur_qid]]), np.array(d["relevant_windows"])
)[0]
cur_max_iou_idx = np.argmax(cur_ious)
gt_qid2window[cur_qid] = cur_gt_windows[cur_max_iou_idx]
qids = list(pred_qid2window.keys())
pred_windows = np.array([pred_qid2window[k] for k in qids]).astype(float)
gt_windows = np.array([gt_qid2window[k] for k in qids]).astype(float)
pred_gt_iou = compute_temporal_iou_batch_paired(pred_windows, gt_windows)
iou_thd2recall_at_one = {}
miou_at_one = float(f"{np.mean(pred_gt_iou) * 100:.2f}")
for thd in iou_thds:
iou_thd2recall_at_one[str(thd)] = float(f"{np.mean(pred_gt_iou >= thd) * 100:.2f}")
return iou_thd2recall_at_one, miou_at_one
def get_window_len(window):
return window[1] - window[0]
def get_data_by_range(submission, ground_truth, len_range):
""" keep queries with ground truth window length in the specified length range.
Args:
submission:
ground_truth:
len_range: [min_l (int), max_l (int)]. the range is (min_l, max_l], i.e., min_l < l <= max_l
"""
min_l, max_l = len_range
if min_l == 0 and max_l == 150: # min and max l in dataset
return submission, ground_truth
# only keep ground truth with windows in the specified length range
# if multiple GT windows exists, we only keep the ones in the range
ground_truth_in_range = []
gt_qids_in_range = set()
for d in ground_truth:
rel_windows_in_range = [
w for w in d["relevant_windows"] if min_l < get_window_len(w) <= max_l]
if len(rel_windows_in_range) > 0:
d = copy.deepcopy(d)
d["relevant_windows"] = rel_windows_in_range
ground_truth_in_range.append(d)
gt_qids_in_range.add(d["qid"])
# keep only submissions for ground_truth_in_range
submission_in_range = []
for d in submission:
if d["qid"] in gt_qids_in_range:
submission_in_range.append(copy.deepcopy(d))
return submission_in_range, ground_truth_in_range
def eval_moment_retrieval(submission, ground_truth, verbose=True):
length_ranges = [[0, 10], [10, 30], [30, 150], [0, 150], ] #
range_names = ["short", "middle", "long", "full"]
ret_metrics = {}
for l_range, name in zip(length_ranges, range_names):
if verbose:
start_time = time.time()
_submission, _ground_truth = get_data_by_range(submission, ground_truth, l_range)
print(f"{name}: {l_range}, {len(_ground_truth)}/{len(ground_truth)}="
f"{100*len(_ground_truth)/len(ground_truth):.2f} examples.")
if len(_ground_truth) == 0:
# ret_metrics[name] = {"MR-mAP": 0., "MR-R1": 0.}
dummy_dict = {}
for k in np.linspace(0.5, 0.95, 19):
dummy_dict[k] = 0.
dummy_dict['average'] = 0.
ret_metrics[name] = {"MR-mAP": dummy_dict, "MR-R1": dummy_dict}
else:
iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50)
iou_thd2recall_at_one, miou_at_one = compute_mr_r1(_submission, _ground_truth)
ret_metrics[name] = {"MR-mIoU": miou_at_one,
"MR-mAP": iou_thd2average_precision,
"MR-R1": iou_thd2recall_at_one}
# iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50)
# iou_thd2recall_at_one = compute_mr_r1(_submission, _ground_truth)
# ret_metrics[name] = {"MR-mAP": iou_thd2average_precision, "MR-R1": iou_thd2recall_at_one}
if verbose:
print(f"[eval_moment_retrieval] [{name}] {time.time() - start_time:.2f} seconds")
return ret_metrics
def compute_hl_hit1(qid2preds, qid2gt_scores_binary):
qid2max_scored_clip_idx = {k: np.argmax(v["pred_saliency_scores"]) for k, v in qid2preds.items()}
hit_scores = np.zeros((len(qid2preds), 3))
qids = list(qid2preds.keys())
for idx, qid in enumerate(qids):
pred_clip_idx = qid2max_scored_clip_idx[qid]
gt_scores_binary = qid2gt_scores_binary[qid] # (#clips, 3)
if pred_clip_idx < len(gt_scores_binary):
hit_scores[idx] = gt_scores_binary[pred_clip_idx]
# aggregate scores from 3 separate annotations (3 workers) by taking the max.
# then average scores from all queries.
hit_at_one = float(f"{100 * np.mean(np.max(hit_scores, 1)):.2f}")
return hit_at_one
def compute_hl_ap(qid2preds, qid2gt_scores_binary, num_workers=8, chunksize=50):
qid2pred_scores = {k: v["pred_saliency_scores"] for k, v in qid2preds.items()}
ap_scores = np.zeros((len(qid2preds), 3)) # (#preds, 3)
qids = list(qid2preds.keys())
input_tuples = []
for idx, qid in enumerate(qids):
for w_idx in range(3): # annotation score idx
y_true = qid2gt_scores_binary[qid][:, w_idx]
y_predict = np.array(qid2pred_scores[qid])
input_tuples.append((idx, w_idx, y_true, y_predict))
if num_workers > 1:
with mp.Pool(num_workers) as pool:
for idx, w_idx, score in pool.imap_unordered(
compute_ap_from_tuple, input_tuples, chunksize=chunksize):
ap_scores[idx, w_idx] = score
else:
for input_tuple in input_tuples:
idx, w_idx, score = compute_ap_from_tuple(input_tuple)
ap_scores[idx, w_idx] = score
# it's the same if we first average across different annotations, then average across queries
# since all queries have the same #annotations.
mean_ap = float(f"{100 * np.mean(ap_scores):.2f}")
return mean_ap
def compute_ap_from_tuple(input_tuple):
idx, w_idx, y_true, y_predict = input_tuple
if len(y_true) < len(y_predict):
# print(f"len(y_true) < len(y_predict) {len(y_true), len(y_predict)}")
y_predict = y_predict[:len(y_true)]
elif len(y_true) > len(y_predict):
# print(f"len(y_true) > len(y_predict) {len(y_true), len(y_predict)}")
_y_predict = np.zeros(len(y_true))
_y_predict[:len(y_predict)] = y_predict
y_predict = _y_predict
score = get_ap(y_true, y_predict)
return idx, w_idx, score
def mk_gt_scores(gt_data, clip_length=2):
"""gt_data, dict, """
num_clips = int(gt_data["duration"] / clip_length)
saliency_scores_full_video = np.zeros((num_clips, 3))
relevant_clip_ids = np.array(gt_data["relevant_clip_ids"]) # (#relevant_clip_ids, )
saliency_scores_relevant_clips = np.array(gt_data["saliency_scores"]) # (#relevant_clip_ids, 3)
saliency_scores_full_video[relevant_clip_ids] = saliency_scores_relevant_clips
return saliency_scores_full_video # (#clips_in_video, 3) the scores are in range [0, 4]
def eval_highlight(submission, ground_truth, verbose=True):
"""
Args:
submission:
ground_truth:
verbose:
"""
qid2preds = {d["qid"]: d for d in submission}
qid2gt_scores_full_range = {d["qid"]: mk_gt_scores(d) for d in ground_truth} # scores in range [0, 4]
# gt_saliency_score_min: int, in [0, 1, 2, 3, 4]. The minimum score for a positive clip.
gt_saliency_score_min_list = [2, 3, 4]
saliency_score_names = ["Fair", "Good", "VeryGood"]
highlight_det_metrics = {}
for gt_saliency_score_min, score_name in zip(gt_saliency_score_min_list, saliency_score_names):
start_time = time.time()
qid2gt_scores_binary = {
k: (v >= gt_saliency_score_min).astype(float)
for k, v in qid2gt_scores_full_range.items()} # scores in [0, 1]
hit_at_one = compute_hl_hit1(qid2preds, qid2gt_scores_binary)
mean_ap = compute_hl_ap(qid2preds, qid2gt_scores_binary)
highlight_det_metrics[f"HL-min-{score_name}"] = {"HL-mAP": mean_ap, "HL-Hit1": hit_at_one}
if verbose:
print(f"Calculating highlight scores with min score {gt_saliency_score_min} ({score_name})")
print(f"Time cost {time.time() - start_time:.2f} seconds")
return highlight_det_metrics
def eval_submission(submission, ground_truth, verbose=True, match_number=False, hl=False):
"""
Args:
submission: list(dict), each dict is {
qid: str,
query: str,
vid: str,
pred_relevant_windows: list([st, ed]),
pred_saliency_scores: list(float), len == #clips in video.
i.e., each clip in the video will have a saliency score.
}
ground_truth: list(dict), each dict is {
"qid": 7803,
"query": "Man in gray top walks from outside to inside.",
"duration": 150,
"vid": "RoripwjYFp8_360.0_510.0",
"relevant_clip_ids": [13, 14, 15, 16, 17]
"saliency_scores": [[4, 4, 2], [3, 4, 2], [2, 2, 3], [2, 2, 2], [0, 1, 3]]
each sublist corresponds to one clip in relevant_clip_ids.
The 3 elements in the sublist are scores from 3 different workers. The
scores are in [0, 1, 2, 3, 4], meaning [Very Bad, ..., Good, Very Good]
}
verbose:
match_number:
Returns:
"""
pred_qids = set([e["qid"] for e in submission])
gt_qids = set([e["qid"] for e in ground_truth])
# import pdb; pdb.set_trace()
if match_number:
assert pred_qids == gt_qids, \
f"qids in ground_truth and submission must match. " \
f"use `match_number=False` if you wish to disable this check"
else: # only leave the items that exists in both submission and ground_truth
shared_qids = pred_qids.intersection(gt_qids)
submission = [e for e in submission if e["qid"] in shared_qids]
ground_truth = [e for e in ground_truth if e["qid"] in shared_qids]
eval_metrics = {}
eval_metrics_brief = OrderedDict()
if "pred_relevant_windows" in submission[0]:
moment_ret_scores = eval_moment_retrieval(submission, ground_truth, verbose=verbose)
eval_metrics.update(moment_ret_scores)
moment_ret_scores_brief = {
"MR-full-mAP": moment_ret_scores["full"]["MR-mAP"]["average"],
"[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.5"],
"[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.75"],
"MR-short-mAP": moment_ret_scores["short"]["MR-mAP"]["average"],
"MR-middle-mAP": moment_ret_scores["middle"]["MR-mAP"]["average"],
"MR-long-mAP": moment_ret_scores["long"]["MR-mAP"]["average"],
"MR-full-mIoU": moment_ret_scores["full"]["MR-mIoU"],
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.3"],
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.5"],
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.7"],
}
eval_metrics_brief.update(
sorted([(k, v) for k, v in moment_ret_scores_brief.items()], key=lambda x: x[0]))
if "pred_saliency_scores" in submission[0] and hl:
highlight_det_scores = eval_highlight(
submission, ground_truth, verbose=verbose)
eval_metrics.update(highlight_det_scores)
highlight_det_scores_brief = dict([
(f"{k}-{sub_k.split('-')[1]}", v[sub_k])
for k, v in highlight_det_scores.items() for sub_k in v])
eval_metrics_brief.update(highlight_det_scores_brief)
# sort by keys
final_eval_metrics = OrderedDict()
final_eval_metrics["brief"] = eval_metrics_brief
final_eval_metrics.update(sorted([(k, v) for k, v in eval_metrics.items()], key=lambda x: x[0]))
return final_eval_metrics
def eval_main():
import argparse
parser = argparse.ArgumentParser(description="Moments and Highlights Evaluation Script")
parser.add_argument("--submission_path", type=str, help="path to generated prediction file")
parser.add_argument("--gt_path", type=str, help="path to GT file")
parser.add_argument("--save_path", type=str, help="path to save the results")
parser.add_argument("--not_verbose", action="store_true")
args = parser.parse_args()
verbose = not args.not_verbose
submission = load_jsonl(args.submission_path)
gt = load_jsonl(args.gt_path)
results = eval_submission(submission, gt, verbose=verbose)
if verbose:
print(json.dumps(results, indent=4))
with open(args.save_path, "w") as f:
f.write(json.dumps(results, indent=4))
if __name__ == '__main__':
eval_main()