import numpy as np from collections import OrderedDict, defaultdict import json import time import copy import multiprocessing as mp from src.model.cgdetr_main.standalone_eval.utils import compute_average_precision_detection, \ compute_temporal_iou_batch_cross, compute_temporal_iou_batch_paired, load_jsonl, get_ap def compute_average_precision_detection_wrapper( input_triple, tiou_thresholds=np.linspace(0.5, 0.95, 10)): qid, ground_truth, prediction = input_triple scores = compute_average_precision_detection( ground_truth, prediction, tiou_thresholds=tiou_thresholds) return qid, scores def compute_mr_ap(submission, ground_truth, iou_thds=np.linspace(0.5, 0.95, 10), max_gt_windows=None, max_pred_windows=10, num_workers=8, chunksize=50): iou_thds = [float(f"{e:.2f}") for e in iou_thds] pred_qid2data = defaultdict(list) for d in submission: pred_windows = d["pred_relevant_windows"][:max_pred_windows] \ if max_pred_windows is not None else d["pred_relevant_windows"] qid = d["qid"] for w in pred_windows: pred_qid2data[qid].append({ "video-id": d["qid"], # in order to use the API "t-start": w[0], "t-end": w[1], "score": w[2] }) gt_qid2data = defaultdict(list) for d in ground_truth: gt_windows = d["relevant_windows"][:max_gt_windows] \ if max_gt_windows is not None else d["relevant_windows"] qid = d["qid"] for w in gt_windows: gt_qid2data[qid].append({ "video-id": d["qid"], "t-start": w[0], "t-end": w[1] }) qid2ap_list = {} # start_time = time.time() data_triples = [[qid, gt_qid2data[qid], pred_qid2data[qid]] for qid in pred_qid2data] from functools import partial compute_ap_from_triple = partial( compute_average_precision_detection_wrapper, tiou_thresholds=iou_thds) if num_workers > 1: with mp.Pool(num_workers) as pool: for qid, scores in pool.imap_unordered(compute_ap_from_triple, data_triples, chunksize=chunksize): qid2ap_list[qid] = scores else: for data_triple in data_triples: qid, scores = compute_ap_from_triple(data_triple) qid2ap_list[qid] = scores # print(f"compute_average_precision_detection {time.time() - start_time:.2f} seconds.") ap_array = np.array(list(qid2ap_list.values())) # (#queries, #thd) ap_thds = ap_array.mean(0) # mAP at different IoU thresholds. iou_thd2ap = dict(zip([str(e) for e in iou_thds], ap_thds)) iou_thd2ap["average"] = np.mean(ap_thds) # formatting iou_thd2ap = {k: float(f"{100 * v:.2f}") for k, v in iou_thd2ap.items()} return iou_thd2ap def compute_mr_r1(submission, ground_truth, iou_thds=np.linspace(0.3, 0.95, 14)): """If a predicted segment has IoU >= iou_thd with one of the 1st GT segment, we define it positive""" iou_thds = [float(f"{e:.2f}") for e in iou_thds] pred_qid2window = {d["qid"]: d["pred_relevant_windows"][0][:2] for d in submission} # :2 rm scores # gt_qid2window = {d["qid"]: d["relevant_windows"][0] for d in ground_truth} gt_qid2window = {} for d in ground_truth: cur_gt_windows = d["relevant_windows"] cur_qid = d["qid"] cur_max_iou_idx = 0 if len(cur_gt_windows) > 0: # select the GT window that has the highest IoU cur_ious = compute_temporal_iou_batch_cross( np.array([pred_qid2window[cur_qid]]), np.array(d["relevant_windows"]) )[0] cur_max_iou_idx = np.argmax(cur_ious) gt_qid2window[cur_qid] = cur_gt_windows[cur_max_iou_idx] qids = list(pred_qid2window.keys()) pred_windows = np.array([pred_qid2window[k] for k in qids]).astype(float) gt_windows = np.array([gt_qid2window[k] for k in qids]).astype(float) pred_gt_iou = compute_temporal_iou_batch_paired(pred_windows, gt_windows) iou_thd2recall_at_one = {} miou_at_one = float(f"{np.mean(pred_gt_iou) * 100:.2f}") for thd in iou_thds: iou_thd2recall_at_one[str(thd)] = float(f"{np.mean(pred_gt_iou >= thd) * 100:.2f}") return iou_thd2recall_at_one, miou_at_one def get_window_len(window): return window[1] - window[0] def get_data_by_range(submission, ground_truth, len_range): """ keep queries with ground truth window length in the specified length range. Args: submission: ground_truth: len_range: [min_l (int), max_l (int)]. the range is (min_l, max_l], i.e., min_l < l <= max_l """ min_l, max_l = len_range if min_l == 0 and max_l == 150: # min and max l in dataset return submission, ground_truth # only keep ground truth with windows in the specified length range # if multiple GT windows exists, we only keep the ones in the range ground_truth_in_range = [] gt_qids_in_range = set() for d in ground_truth: rel_windows_in_range = [ w for w in d["relevant_windows"] if min_l < get_window_len(w) <= max_l] if len(rel_windows_in_range) > 0: d = copy.deepcopy(d) d["relevant_windows"] = rel_windows_in_range ground_truth_in_range.append(d) gt_qids_in_range.add(d["qid"]) # keep only submissions for ground_truth_in_range submission_in_range = [] for d in submission: if d["qid"] in gt_qids_in_range: submission_in_range.append(copy.deepcopy(d)) return submission_in_range, ground_truth_in_range def eval_moment_retrieval(submission, ground_truth, verbose=True): length_ranges = [[0, 10], [10, 30], [30, 150], [0, 150], ] # range_names = ["short", "middle", "long", "full"] ret_metrics = {} for l_range, name in zip(length_ranges, range_names): if verbose: start_time = time.time() _submission, _ground_truth = get_data_by_range(submission, ground_truth, l_range) print(f"{name}: {l_range}, {len(_ground_truth)}/{len(ground_truth)}=" f"{100*len(_ground_truth)/len(ground_truth):.2f} examples.") if len(_ground_truth) == 0: # ret_metrics[name] = {"MR-mAP": 0., "MR-R1": 0.} dummy_dict = {} for k in np.linspace(0.5, 0.95, 19): dummy_dict[k] = 0. dummy_dict['average'] = 0. ret_metrics[name] = {"MR-mAP": dummy_dict, "MR-R1": dummy_dict} else: iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50) iou_thd2recall_at_one, miou_at_one = compute_mr_r1(_submission, _ground_truth) ret_metrics[name] = {"MR-mIoU": miou_at_one, "MR-mAP": iou_thd2average_precision, "MR-R1": iou_thd2recall_at_one} # iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50) # iou_thd2recall_at_one = compute_mr_r1(_submission, _ground_truth) # ret_metrics[name] = {"MR-mAP": iou_thd2average_precision, "MR-R1": iou_thd2recall_at_one} if verbose: print(f"[eval_moment_retrieval] [{name}] {time.time() - start_time:.2f} seconds") return ret_metrics def compute_hl_hit1(qid2preds, qid2gt_scores_binary): qid2max_scored_clip_idx = {k: np.argmax(v["pred_saliency_scores"]) for k, v in qid2preds.items()} hit_scores = np.zeros((len(qid2preds), 3)) qids = list(qid2preds.keys()) for idx, qid in enumerate(qids): pred_clip_idx = qid2max_scored_clip_idx[qid] gt_scores_binary = qid2gt_scores_binary[qid] # (#clips, 3) if pred_clip_idx < len(gt_scores_binary): hit_scores[idx] = gt_scores_binary[pred_clip_idx] # aggregate scores from 3 separate annotations (3 workers) by taking the max. # then average scores from all queries. hit_at_one = float(f"{100 * np.mean(np.max(hit_scores, 1)):.2f}") return hit_at_one def compute_hl_ap(qid2preds, qid2gt_scores_binary, num_workers=8, chunksize=50): qid2pred_scores = {k: v["pred_saliency_scores"] for k, v in qid2preds.items()} ap_scores = np.zeros((len(qid2preds), 3)) # (#preds, 3) qids = list(qid2preds.keys()) input_tuples = [] for idx, qid in enumerate(qids): for w_idx in range(3): # annotation score idx y_true = qid2gt_scores_binary[qid][:, w_idx] y_predict = np.array(qid2pred_scores[qid]) input_tuples.append((idx, w_idx, y_true, y_predict)) if num_workers > 1: with mp.Pool(num_workers) as pool: for idx, w_idx, score in pool.imap_unordered( compute_ap_from_tuple, input_tuples, chunksize=chunksize): ap_scores[idx, w_idx] = score else: for input_tuple in input_tuples: idx, w_idx, score = compute_ap_from_tuple(input_tuple) ap_scores[idx, w_idx] = score # it's the same if we first average across different annotations, then average across queries # since all queries have the same #annotations. mean_ap = float(f"{100 * np.mean(ap_scores):.2f}") return mean_ap def compute_ap_from_tuple(input_tuple): idx, w_idx, y_true, y_predict = input_tuple if len(y_true) < len(y_predict): # print(f"len(y_true) < len(y_predict) {len(y_true), len(y_predict)}") y_predict = y_predict[:len(y_true)] elif len(y_true) > len(y_predict): # print(f"len(y_true) > len(y_predict) {len(y_true), len(y_predict)}") _y_predict = np.zeros(len(y_true)) _y_predict[:len(y_predict)] = y_predict y_predict = _y_predict score = get_ap(y_true, y_predict) return idx, w_idx, score def mk_gt_scores(gt_data, clip_length=2): """gt_data, dict, """ num_clips = int(gt_data["duration"] / clip_length) saliency_scores_full_video = np.zeros((num_clips, 3)) relevant_clip_ids = np.array(gt_data["relevant_clip_ids"]) # (#relevant_clip_ids, ) saliency_scores_relevant_clips = np.array(gt_data["saliency_scores"]) # (#relevant_clip_ids, 3) saliency_scores_full_video[relevant_clip_ids] = saliency_scores_relevant_clips return saliency_scores_full_video # (#clips_in_video, 3) the scores are in range [0, 4] def eval_highlight(submission, ground_truth, verbose=True): """ Args: submission: ground_truth: verbose: """ qid2preds = {d["qid"]: d for d in submission} qid2gt_scores_full_range = {d["qid"]: mk_gt_scores(d) for d in ground_truth} # scores in range [0, 4] # gt_saliency_score_min: int, in [0, 1, 2, 3, 4]. The minimum score for a positive clip. gt_saliency_score_min_list = [2, 3, 4] saliency_score_names = ["Fair", "Good", "VeryGood"] highlight_det_metrics = {} for gt_saliency_score_min, score_name in zip(gt_saliency_score_min_list, saliency_score_names): start_time = time.time() qid2gt_scores_binary = { k: (v >= gt_saliency_score_min).astype(float) for k, v in qid2gt_scores_full_range.items()} # scores in [0, 1] hit_at_one = compute_hl_hit1(qid2preds, qid2gt_scores_binary) mean_ap = compute_hl_ap(qid2preds, qid2gt_scores_binary) highlight_det_metrics[f"HL-min-{score_name}"] = {"HL-mAP": mean_ap, "HL-Hit1": hit_at_one} if verbose: print(f"Calculating highlight scores with min score {gt_saliency_score_min} ({score_name})") print(f"Time cost {time.time() - start_time:.2f} seconds") return highlight_det_metrics def eval_submission(submission, ground_truth, verbose=True, match_number=False, hl=False): """ Args: submission: list(dict), each dict is { qid: str, query: str, vid: str, pred_relevant_windows: list([st, ed]), pred_saliency_scores: list(float), len == #clips in video. i.e., each clip in the video will have a saliency score. } ground_truth: list(dict), each dict is { "qid": 7803, "query": "Man in gray top walks from outside to inside.", "duration": 150, "vid": "RoripwjYFp8_360.0_510.0", "relevant_clip_ids": [13, 14, 15, 16, 17] "saliency_scores": [[4, 4, 2], [3, 4, 2], [2, 2, 3], [2, 2, 2], [0, 1, 3]] each sublist corresponds to one clip in relevant_clip_ids. The 3 elements in the sublist are scores from 3 different workers. The scores are in [0, 1, 2, 3, 4], meaning [Very Bad, ..., Good, Very Good] } verbose: match_number: Returns: """ pred_qids = set([e["qid"] for e in submission]) gt_qids = set([e["qid"] for e in ground_truth]) # import pdb; pdb.set_trace() if match_number: assert pred_qids == gt_qids, \ f"qids in ground_truth and submission must match. " \ f"use `match_number=False` if you wish to disable this check" else: # only leave the items that exists in both submission and ground_truth shared_qids = pred_qids.intersection(gt_qids) submission = [e for e in submission if e["qid"] in shared_qids] ground_truth = [e for e in ground_truth if e["qid"] in shared_qids] eval_metrics = {} eval_metrics_brief = OrderedDict() if "pred_relevant_windows" in submission[0]: moment_ret_scores = eval_moment_retrieval(submission, ground_truth, verbose=verbose) eval_metrics.update(moment_ret_scores) moment_ret_scores_brief = { "MR-full-mAP": moment_ret_scores["full"]["MR-mAP"]["average"], "MR-full-mAP@0.5": moment_ret_scores["full"]["MR-mAP"]["0.5"], "MR-full-mAP@0.75": moment_ret_scores["full"]["MR-mAP"]["0.75"], "MR-short-mAP": moment_ret_scores["short"]["MR-mAP"]["average"], "MR-middle-mAP": moment_ret_scores["middle"]["MR-mAP"]["average"], "MR-long-mAP": moment_ret_scores["long"]["MR-mAP"]["average"], "MR-full-mIoU": moment_ret_scores["full"]["MR-mIoU"], "MR-full-R1@0.3": moment_ret_scores["full"]["MR-R1"]["0.3"], "MR-full-R1@0.5": moment_ret_scores["full"]["MR-R1"]["0.5"], "MR-full-R1@0.7": moment_ret_scores["full"]["MR-R1"]["0.7"], } eval_metrics_brief.update( sorted([(k, v) for k, v in moment_ret_scores_brief.items()], key=lambda x: x[0])) if "pred_saliency_scores" in submission[0] and hl: highlight_det_scores = eval_highlight( submission, ground_truth, verbose=verbose) eval_metrics.update(highlight_det_scores) highlight_det_scores_brief = dict([ (f"{k}-{sub_k.split('-')[1]}", v[sub_k]) for k, v in highlight_det_scores.items() for sub_k in v]) eval_metrics_brief.update(highlight_det_scores_brief) # sort by keys final_eval_metrics = OrderedDict() final_eval_metrics["brief"] = eval_metrics_brief final_eval_metrics.update(sorted([(k, v) for k, v in eval_metrics.items()], key=lambda x: x[0])) return final_eval_metrics def eval_main(): import argparse parser = argparse.ArgumentParser(description="Moments and Highlights Evaluation Script") parser.add_argument("--submission_path", type=str, help="path to generated prediction file") parser.add_argument("--gt_path", type=str, help="path to GT file") parser.add_argument("--save_path", type=str, help="path to save the results") parser.add_argument("--not_verbose", action="store_true") args = parser.parse_args() verbose = not args.not_verbose submission = load_jsonl(args.submission_path) gt = load_jsonl(args.gt_path) results = eval_submission(submission, gt, verbose=verbose) if verbose: print(json.dumps(results, indent=4)) with open(args.save_path, "w") as f: f.write(json.dumps(results, indent=4)) if __name__ == '__main__': eval_main()