PVC-InternVL2-8B / README.md
cyyang822's picture
update README.md
b680eec
metadata
license: mit
base_model:
  - OpenGVLab/InternViT-300M-448px
  - internlm/internlm2_5-7b-chat
base_model_relation: merge
language:
  - multilingual
pipeline_tag: image-text-to-text
library_name: transformers
tags:
  - internvl
  - video
  - token compression

PVC-InternVL2-8B

[πŸ“œ Paper] [πŸ“‚ GitHub] [πŸš€ Quick Start]

Introduction

We introduce the Progressive Visual Token Compression (PVC) in large vision-language models (VLMs), which unifies the visual inputs as videos and progressively compresses vision tokens across video frames. Our PVC achieves:

  • Preserve spatial details and temporal dynamics for both images and videos.
  • Effectively reduce the tokens used for each video frame and image tile.
  • SoTA performance on various video benchmarks, including long and fine-grained short video tasks.
  • No performance loss on image benchmarks, especially on detail-sensitive tasks.

Results

Our implementation is based on the InternVL2 model, referred to as PVCInternVL2

Video Understanding Benckmarks

Model LLaVA-OneVision-7B Qwen2-VL-7B InternVL2-8B PVCInternVL2-8B
# token/frame 196 - 256 64
MVbench 56.7 67.0 66.4 73.8
VideoMME w/o-sub 58.2 63.3 54.0 64.1
VideoMME w-sub 61.5 69.0 56.9 69.7
MLVU 64.7 - 52.0 72.4
LongVideoBench 56.5 - - 59.2
NextQA 79.4 - - 82.0
Egoschema 60.1 66.7 55.0 59.6
PercepTest 57.1 62.3 52.0 68.4
AcNet-QA 56.6 - - 57.1

Image Understanding Benckmarks

Model LLaVA-OneVision-7B Qwen2-VL-7B InternVL2-8B PVCInternVL2-8B
# token/image tile 729 - 256 64
AI2Dtest 81.4 83.0 83.8 83.8
ChartQAtest 80.0 83.0 83.3 84.1
DocVQAtest 87.5 94.5 91.6 92.5
InfoVQAtest 68.8 76.5 74.8 75.0
SQAtest 96.0 - 97.1 97.7
TextVQAval - 84.3 77.4 80.0
MMBen-test - 83.0 81.7 83.9
MMEsum 1998 2327 2210 2282
MMMUval 48.8 54.1 49.3 50.9
SEEDI 75.4 - 76.2 77.2
OCRBench - 866 794 807

Quick Start

import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list


path = 'OpenGVLab/PVC-InternVL2-8B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=True)

# single-image conversation
pixel_values = load_image('./assets/example_image1.jpg', max_num=12).to(torch.bfloat16).cuda()
data_flag = torch.tensor([1], dtype=torch.long).cuda()

question = '<image>\nWhat is in the image?'
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag)
print(f'User: {question}\nAssistant: {response}')

# multi-image conversation
pixel_values1 = load_image('./assets/example_image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./assets/example_image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
data_flag = torch.tensor([2], dtype=torch.long).cuda()
num_patches_list = [pixel_values1.shape[0], pixel_values2.shape[0]]

question = 'Image-1: <image>\nImage-2: <image>\nWhat are the similarities and differences between these two images.'
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag, num_patches_list=num_patches_list)
print(f'User: {question}\nAssistant: {response}')

# video conversation
pixel_values, num_patches_list = load_video('./assets/example_video.mp4', num_segments=64, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
# Frame1: <image>\nFrame2: <image>\n...\nFrameN: <image>\n{question}
data_flag = torch.tensor([3], dtype=torch.long).cuda()

question = video_prefix + 'Describe this video in detail.'
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag, num_patches_list=num_patches_list)
print(f'User: {question}\nAssistant: {response}')

Evaluation

Please refer to our Github Repo.

Citation

If you find this work helpful in your research, please consider citing:

@article{yang2024pvc,
  title={PVC: Progressive Visual Token Compression for Unified Image and Video Processing in Large Vision-Language Models},
  author={Yang, Chenyu and Dong, Xuan and Zhu, Xizhou and Su, Weijie and Wang, Jiahao and Tian, Hao and Chen, Zhe and Wang, Wenhai and Lu, Lewei and and Dai, Jifeng},
  journal={arXiv preprint arXiv:2412.09613},
  year={2024}
}

License

This project is released under the MIT license. Parts of this project contain code and models from other sources, which are subject to their respective licenses.