segformer-b0-PLbubble

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1220
  • Mean Iou: 1.0
  • Mean Accuracy: 1.0
  • Overall Accuracy: 1.0
  • Per Category Iou: [1.0, nan]
  • Per Category Accuracy: [1.0, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.4349 0.1333 20 0.6675 0.4882 0.9764 0.9764 [0.9763812450566833, 0.0] [0.9763812450566833, nan]
0.3447 0.2667 40 0.5703 0.4808 0.9615 0.9615 [0.9615355039985939, 0.0] [0.9615355039985939, nan]
0.2628 0.4 60 0.4469 0.4972 0.9945 0.9945 [0.9944809929475349, 0.0] [0.9944809929475349, nan]
0.2494 0.5333 80 0.3912 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.1228 0.6667 100 0.2821 0.4969 0.9938 0.9938 [0.9937532268872484, 0.0] [0.9937532268872484, nan]
0.1172 0.8 120 0.1438 0.4976 0.9952 0.9952 [0.9951531466956675, 0.0] [0.9951531466956675, nan]
0.1035 0.9333 140 0.1420 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0766 1.0667 160 0.2453 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0671 1.2 180 0.2341 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0321 1.3333 200 0.1829 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0274 1.4667 220 0.2913 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0351 1.6 240 0.1384 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.022 1.7333 260 0.1360 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0241 1.8667 280 0.0779 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0182 2.0 300 0.2171 0.4979 0.9958 0.9958 [0.9957545835530363, 0.0] [0.9957545835530363, nan]
0.0204 2.1333 320 0.0848 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0137 2.2667 340 0.0955 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0143 2.4 360 0.1749 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0094 2.5333 380 0.2083 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0106 2.6667 400 0.0401 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.008 2.8 420 0.2128 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0074 2.9333 440 0.1823 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0076 3.0667 460 0.0463 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0102 3.2 480 0.0970 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0095 3.3333 500 0.0600 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0075 3.4667 520 0.1235 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0063 3.6 540 0.0755 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0058 3.7333 560 0.1467 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0071 3.8667 580 0.1714 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0057 4.0 600 0.1630 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0044 4.1333 620 0.1440 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0054 4.2667 640 0.1697 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0067 4.4 660 0.0370 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0056 4.5333 680 0.0017 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0047 4.6667 700 0.0768 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0037 4.8 720 0.1698 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0035 4.9333 740 0.1520 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0029 5.0667 760 0.1739 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0032 5.2 780 0.0686 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0036 5.3333 800 0.0714 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0046 5.4667 820 0.1578 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0031 5.6 840 0.0672 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0046 5.7333 860 0.1603 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0025 5.8667 880 0.0582 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0023 6.0 900 0.0454 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0028 6.1333 920 0.0213 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0022 6.2667 940 0.1520 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0022 6.4 960 0.1324 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0018 6.5333 980 0.1648 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0032 6.6667 1000 0.1482 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0027 6.8 1020 0.0168 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0025 6.9333 1040 0.1659 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0018 7.0667 1060 0.1450 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0033 7.2 1080 0.0364 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0015 7.3333 1100 0.0243 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0016 7.4667 1120 0.1476 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0016 7.6 1140 0.0828 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0015 7.7333 1160 0.1479 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0015 7.8667 1180 0.0738 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0019 8.0 1200 0.0908 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0028 8.1333 1220 0.1636 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.001 8.2667 1240 0.1233 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0014 8.4 1260 0.0878 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0021 8.5333 1280 0.0775 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0018 8.6667 1300 0.0159 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0012 8.8 1320 0.1521 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0016 8.9333 1340 0.1453 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0009 9.0667 1360 0.0766 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.001 9.2 1380 0.0553 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.001 9.3333 1400 0.1483 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0011 9.4667 1420 0.1172 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0021 9.6 1440 0.0503 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0009 9.7333 1460 0.2155 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0009 9.8667 1480 0.2272 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 10.0 1500 0.2017 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0019 10.1333 1520 0.1512 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0009 10.2667 1540 0.1371 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 10.4 1560 0.0169 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0015 10.5333 1580 0.1463 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0015 10.6667 1600 0.0502 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0015 10.8 1620 0.0403 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0012 10.9333 1640 0.0887 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0013 11.0667 1660 0.0072 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0007 11.2 1680 0.0104 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0011 11.3333 1700 0.1380 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0013 11.4667 1720 0.1270 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.001 11.6 1740 0.1037 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 11.7333 1760 0.0829 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 11.8667 1780 0.0124 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0011 12.0 1800 0.1691 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0007 12.1333 1820 0.0873 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 12.2667 1840 0.0830 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0011 12.4 1860 0.0893 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0007 12.5333 1880 0.0830 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0007 12.6667 1900 0.0718 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 12.8 1920 0.1217 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 12.9333 1940 0.0428 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0011 13.0667 1960 0.0398 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0014 13.2 1980 0.0986 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 13.3333 2000 0.0159 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0014 13.4667 2020 0.0748 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 13.6 2040 0.0898 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 13.7333 2060 0.0292 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 13.8667 2080 0.1166 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 14.0 2100 0.0387 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0009 14.1333 2120 0.1439 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 14.2667 2140 0.0181 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 14.4 2160 0.1052 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0011 14.5333 2180 0.0284 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 14.6667 2200 0.0839 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 14.8 2220 0.0989 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 14.9333 2240 0.0986 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 15.0667 2260 0.1199 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 15.2 2280 0.1042 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0019 15.3333 2300 0.0328 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.001 15.4667 2320 0.1013 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 15.6 2340 0.0943 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 15.7333 2360 0.0977 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 15.8667 2380 0.1455 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 16.0 2400 0.0704 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 16.1333 2420 0.0749 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 16.2667 2440 0.0422 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 16.4 2460 0.1148 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 16.5333 2480 0.1193 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 16.6667 2500 0.0921 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 16.8 2520 0.1161 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 16.9333 2540 0.0058 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 17.0667 2560 0.0716 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 17.2 2580 0.0665 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0008 17.3333 2600 0.0849 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 17.4667 2620 0.0328 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 17.6 2640 0.0908 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0007 17.7333 2660 0.0819 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0007 17.8667 2680 0.0499 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 18.0 2700 0.0174 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 18.1333 2720 0.1184 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 18.2667 2740 0.0366 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 18.4 2760 0.0037 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 18.5333 2780 0.0031 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 18.6667 2800 0.0479 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 18.8 2820 0.0271 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 18.9333 2840 0.0747 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0022 19.0667 2860 0.0904 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 19.2 2880 0.1316 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 19.3333 2900 0.1361 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 19.4667 2920 0.0948 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 19.6 2940 0.0495 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 19.7333 2960 0.0979 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0011 19.8667 2980 0.1175 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 20.0 3000 0.0074 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 20.1333 3020 0.1573 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 20.2667 3040 0.0160 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 20.4 3060 0.0915 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 20.5333 3080 0.0551 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 20.6667 3100 0.0192 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 20.8 3120 0.0277 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 20.9333 3140 0.1103 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 21.0667 3160 0.0565 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0006 21.2 3180 0.0097 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 21.3333 3200 0.0588 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 21.4667 3220 0.0182 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 21.6 3240 0.0832 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 21.7333 3260 0.0988 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 21.8667 3280 0.0841 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 22.0 3300 0.1069 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 22.1333 3320 0.1176 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 22.2667 3340 0.1257 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 22.4 3360 0.1052 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 22.5333 3380 0.0457 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 22.6667 3400 0.1074 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0007 22.8 3420 0.0232 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 22.9333 3440 0.0478 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 23.0667 3460 0.0762 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 23.2 3480 0.0857 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 23.3333 3500 0.1673 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 23.4667 3520 0.1409 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 23.6 3540 0.1192 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 23.7333 3560 0.1272 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 23.8667 3580 0.1327 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 24.0 3600 0.0691 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 24.1333 3620 0.1050 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 24.2667 3640 0.0339 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 24.4 3660 0.0274 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 24.5333 3680 0.1326 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 24.6667 3700 0.0904 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 24.8 3720 0.1312 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 24.9333 3740 0.0775 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 25.0667 3760 0.1099 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 25.2 3780 0.0509 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 25.3333 3800 0.1120 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 25.4667 3820 0.0131 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 25.6 3840 0.0640 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 25.7333 3860 0.0422 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 25.8667 3880 0.1482 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 26.0 3900 0.1136 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 26.1333 3920 0.1221 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 26.2667 3940 0.0991 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 26.4 3960 0.0169 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 26.5333 3980 0.1594 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 26.6667 4000 0.1176 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 26.8 4020 0.1065 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 26.9333 4040 0.0929 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 27.0667 4060 0.1079 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 27.2 4080 0.1030 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 27.3333 4100 0.0099 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 27.4667 4120 0.0439 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0005 27.6 4140 0.0538 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 27.7333 4160 0.1287 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 27.8667 4180 0.1273 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 28.0 4200 0.0277 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 28.1333 4220 0.0621 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 28.2667 4240 0.1391 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 28.4 4260 0.0709 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 28.5333 4280 0.1256 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 28.6667 4300 0.0285 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 28.8 4320 0.0218 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 28.9333 4340 0.0459 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 29.0667 4360 0.0612 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 29.2 4380 0.0804 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 29.3333 4400 0.0384 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 29.4667 4420 0.1265 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0004 29.6 4440 0.0007 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 29.7333 4460 0.0273 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0002 29.8667 4480 0.0411 1.0 1.0 1.0 [1.0, nan] [1.0, nan]
0.0003 30.0 4500 0.1220 1.0 1.0 1.0 [1.0, nan] [1.0, nan]

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
41
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for NredCat822/segformer-b0-PLbubble

Base model

nvidia/mit-b0
Finetuned
(335)
this model