Quantization Notes:
bpw: 5 hb: 6 calibration_length: 8192 measurement_length: 8192
Quantization Code:
Posting this here for convenience in case anyone is interested or finds it useful. I run this code using a conda 3.12 python env in WSL 2 Ubuntu. Steps to run include creating conda env and installing / upgrading exllamav2, logging into huggingface using the "huggingface-cli login" terminal command, configuring the config.yaml file, then running the python script.
base_model_name: "Endurance-100B-v1"
input_model: "~/models/TheDrummer_Endurance-100B-v1"
download_output_dir: "~/models"
output_base_path: "~/models/exl2-converted"
hf_username: "NobodySpecial"
default_hb: 6 # Default head bits value
exllama_path: "~/exllamav2"
quantizations:
- bpw: 5
calibration_length: 8192 # Optional: specify calibration length in tokens
measurement_length: 8192 # Optional: specify measurement length in tokens
- bpw: 6
hb: 8 # Optional
calibration_length: 8192 # Optional: specify calibration length in tokens
measurement_length: 8192 # Optional: specify measurement length in tokens
import yaml
import os
import sys
import subprocess
import logging
import re
from tqdm import tqdm
from pathlib import Path
from huggingface_hub import HfApi, create_repo, login, hf_hub_download
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def run_command(command_list, timeout=300):
try:
process = subprocess.Popen(
command_list,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
universal_newlines=True
)
while True:
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
logging.info(output.strip())
rc = process.poll()
if rc != 0:
error_output = process.stderr.read()
logging.error(f"Error executing command: {' '.join(command_list)}")
logging.error(f"Error output: {error_output}")
return False
logging.info(f"Command executed successfully: {' '.join(command_list)}")
return True
except subprocess.TimeoutExpired:
logging.error(f"Command timed out: {' '.join(command_list)}")
process.kill()
return False
except Exception as e:
logging.error(f"Unexpected error executing command: {' '.join(command_list)}")
logging.error(f"Error: {str(e)}")
return False
def validate_config(config):
required_keys = [
'exllama_path',
'base_model_name',
'input_model',
'output_base_path',
'hf_username',
'quantizations'
]
missing_keys = [key for key in required_keys if key not in config]
if missing_keys:
logging.error(f"Missing required configuration keys: {', '.join(missing_keys)}")
return False
# Validate exllama_path
if not os.path.isdir(os.path.expanduser(config['exllama_path'])):
logging.error(f"exllama_path does not exist or is not a directory: {config['exllama_path']}")
return False
# Validate output_base_path
output_base_path = os.path.expanduser(config['output_base_path'])
if not os.path.isdir(output_base_path):
try:
os.makedirs(output_base_path, exist_ok=True)
logging.info(f"Created output_base_path directory: {output_base_path}")
except OSError as e:
logging.error(f"Failed to create output_base_path directory: {str(e)}")
return False
return True
def authenticate_hf():
try:
# Read the token from the local cache file
token_path = os.path.expanduser("~/.cache/huggingface/token")
with open(token_path, "r") as token_file:
hf_token = token_file.read().strip()
# Use the token to login
login(token=hf_token)
logging.info("Authenticated with Hugging Face successfully.")
except Exception as e:
logging.error(f"Failed to authenticate with Hugging Face: {str(e)}")
return False
return True
def sanitize_model_and_branch_names(model, branch):
# Remove trailing slash if present
model = model.rstrip('/')
# Remove base URL if present
if model.startswith("https://huggingface.co/"):
model = model[len("https://huggingface.co/"):]
# Split model and branch if provided in model name
model_parts = model.split(":")
model = model_parts[0]
branch = model_parts[1] if len(model_parts) > 1 else branch
# Use 'main' as default branch if not specified
if branch is None:
branch = "main"
# Validate branch name
if not re.match(r"^[a-zA-Z0-9._-]+$", branch):
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
return model, branch
def download_model(model_name, branch_name, output_dir):
# Sanitize model and branch names
model_name, branch_name = sanitize_model_and_branch_names(model_name, branch_name)
# Expand user directory if needed
output_dir = os.path.expanduser(output_dir)
# Initialize Hugging Face API
api = HfApi()
# Create output directory
output_folder = Path(output_dir) / f"{'_'.join(model_name.split('/')[-2:])}"
if branch_name != "main":
output_folder = output_folder.with_name(f"{output_folder.name}_{branch_name}")
output_folder.mkdir(parents=True, exist_ok=True)
# Get file list
try:
files = api.list_repo_files(model_name, revision=branch_name)
except Exception as e:
logging.error(f"Error accessing repository: {e}")
return None
# Download files
for file in tqdm(files, desc="Downloading files"):
try:
hf_hub_download(
repo_id=model_name,
filename=file,
revision=branch_name,
local_dir=output_folder,
local_dir_use_symlinks=False
)
except Exception as e:
logging.error(f"Error downloading {file}: {e}")
logging.info(f"Model downloaded to {output_folder}")
return output_folder
def resolve_input_model(config):
input_model = os.path.expanduser(config['input_model'])
if os.path.isdir(input_model):
# Input model is a local directory
logging.info(f"Using local model directory: {input_model}")
return input_model
else:
# Input model is a Hugging Face repository
logging.info(f"Input model is a Hugging Face model: {input_model}")
download_output_dir = os.path.expanduser(config.get('download_output_dir', './models'))
if not os.path.isdir(download_output_dir):
try:
os.makedirs(download_output_dir, exist_ok=True)
logging.info(f"Created download_output_dir directory: {download_output_dir}")
except OSError as e:
logging.error(f"Failed to create download_output_dir directory: {str(e)}")
sys.exit(1)
model_name, branch_name = sanitize_model_and_branch_names(input_model, branch=None)
output_folder = download_model(model_name, branch_name, download_output_dir)
if output_folder is None:
logging.error("Failed to download the model.")
sys.exit(1)
return str(output_folder)
def quantize_and_upload(config, input_model_path):
exllama_path = os.path.expanduser(config['exllama_path'])
base_model_name = config['base_model_name']
output_base_path = os.path.expanduser(config['output_base_path'])
hf_username = config['hf_username']
default_hb = config.get('default_hb', 8)
for quant_config in config['quantizations']:
if 'bpw' not in quant_config:
logging.warning("Skipping quantization config without 'bpw'.")
continue
bpw = quant_config['bpw']
hb = quant_config.get('hb', default_hb)
calibration_length = quant_config.get('calibration_length', 2048)
measurement_length = quant_config.get('measurement_length', calibration_length)
if not isinstance(calibration_length, int) or not isinstance(measurement_length, int):
logging.error(f"Invalid calibration_length or measurement_length values. Expected integers.")
continue
if calibration_length <= 0 or measurement_length <= 0:
logging.error(f"Invalid calibration_length or measurement_length values. Must be positive integers.")
continue
quant_name = f"{base_model_name}-exl2-{bpw}bpw"
work_dir = os.path.join(output_base_path, base_model_name, f"{quant_name}-work")
output_dir = os.path.join(output_base_path, base_model_name, quant_name)
try:
os.makedirs(work_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
logging.info(f"Directories created or already exist: {work_dir}, {output_dir}")
except OSError as e:
logging.error(f"Failed to create directories for {quant_name}: {str(e)}")
continue
# Run quantization
command_list = [
"python", os.path.join(exllama_path, "convert.py"),
"-i", input_model_path,
"-o", work_dir,
"-cf", output_dir,
"-b", str(bpw),
"-hb", str(hb),
"-l", str(calibration_length),
"-ml", str(measurement_length)
]
if not run_command(command_list):
logging.error(f"Quantization failed for {quant_name}. Skipping upload.")
continue
logging.info(f"Quantization completed for {quant_name}")
# Try to upload to Hugging Face
repo_name = f"{hf_username}/{quant_name}"
try:
create_repo(repo_name, repo_type="model", exist_ok=True)
logging.info(f"Repository '{repo_name}' is ready.")
api = HfApi()
api.upload_folder(
folder_path=output_dir,
repo_id=repo_name,
repo_type="model"
)
logging.info(f"Successfully uploaded {quant_name} to Hugging Face")
except Exception as e:
logging.error(f"Failed to upload {quant_name} to Hugging Face: {str(e)}")
logging.info(f"Quantized model is still available locally at {output_dir}")
logging.info(f"Completed processing for {quant_name}")
if __name__ == "__main__":
config_path = "config.yaml"
try:
with open(config_path, "r") as f:
config = yaml.safe_load(f)
logging.info(f"Configuration loaded from {config_path}")
except yaml.YAMLError as e:
logging.error(f"Error parsing {config_path}: {str(e)}")
sys.exit(1)
except FileNotFoundError:
logging.error(f"{config_path} not found. Please create a config file.")
sys.exit(1)
if not validate_config(config):
logging.error("Configuration validation failed. Exiting.")
sys.exit(1)
if not authenticate_hf():
logging.error("Hugging Face authentication failed. Exiting.")
sys.exit(1)
input_model_path = resolve_input_model(config)
if not input_model_path:
logging.error("Failed to resolve input model path. Exiting.")
sys.exit(1)
quantize_and_upload(config, input_model_path)
logging.info("Script execution completed.")
base_model: - TheDrummer/Lazarus-2407-100B
Join our Discord! https://discord.gg/Nbv9pQ88Xb
2500+ members strong πͺ Now with more channels! A hub for users and makers alike!
Endurance 100B v1 π‘
A finetune of Lazarus 2407 100B, a pruned Mistral Large 2407 123B!
Do not go gentle into that good night. Rage, rage against the dying of the light!
Links
- Original: https://huggingface.co/TheDrummer/Endurance-100B-v1
- GGUF: https://huggingface.co/TheDrummer/Endurance-100B-v1-GGUF
- iMatrix: https://huggingface.co/bartowski/Endurance-100B-v1-GGUF (recommended for smaller quants)
Arsenal (Supported Chat Templates)
- Metharme (Pygmalion in ST)
- Creative, unhinged, unique
Favorite RP Format
*action* Dialogue *thoughts* Dialogue *narration*
in 1st person PoV
Favorite Card
Technical Details
Refer to Lazarus 2407 100B for pruning details.
Endurance used the same hyperparameters as Behemoth. Training loss indicates that they are exactly the same albeit with lower confidence.
Notes on Lazarus 100B (base model for Endurance):
- Testers have noted that 100B seemed nearly identical to 123B.
- One tester said that only one minor mistake was made by the model, requiring a rewrite for failing to pick up on the nuance.
- Another tester went through a satisfying 32K playthrough without any issues.
Endurance 100B v1.0 has gone through additional RP & Instruct training.