tags: | |
- autotrain | |
- vision | |
- image-classification | |
datasets: | |
- lewtun/dog_food | |
widget: | |
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg | |
example_title: Tiger | |
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg | |
example_title: Teapot | |
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg | |
example_title: Palace | |
library_name: transformers | |
co2_eq_emissions: | |
emissions: 6.799888815236616 | |
eval_info: | |
col_mapping: test | |
model-index: | |
- name: NimaBoscarino/dog_food | |
results: | |
- task: | |
type: image-classification | |
name: Image Classification | |
dataset: | |
name: lewtun/dog_food | |
type: lewtun/dog_food | |
config: lewtun--dog_food | |
split: test | |
metrics: | |
- name: Accuracy | |
type: accuracy | |
value: 1.0 | |
verified: true | |
- name: Precision Macro | |
type: precision | |
value: 1.0 | |
verified: true | |
- name: Precision Micro | |
type: precision | |
value: 1.0 | |
verified: true | |
- name: Precision Weighted | |
type: precision | |
value: 1.0 | |
verified: true | |
- name: Recall Macro | |
type: recall | |
value: 1.0 | |
verified: true | |
- name: Recall Micro | |
type: recall | |
value: 1.0 | |
verified: true | |
- name: Recall Weighted | |
type: recall | |
value: 1.0 | |
verified: true | |
- name: F1 Macro | |
type: f1 | |
value: 1.0 | |
verified: true | |
- name: F1 Micro | |
type: f1 | |
value: 1.0 | |
verified: true | |
- name: F1 Weighted | |
type: f1 | |
value: 1.0 | |
verified: true | |
- name: loss | |
type: loss | |
value: 1.848173087637406e-05 | |
verified: true | |
# Model Trained Using AutoTrain | |
- Problem type: Multi-class Classification | |
- Model ID: 1647758504 | |
- CO2 Emissions (in grams): 6.7999 | |
## Validation Metrics | |
- Loss: 0.001 | |
- Accuracy: 1.000 | |
- Macro F1: 1.000 | |
- Micro F1: 1.000 | |
- Weighted F1: 1.000 | |
- Macro Precision: 1.000 | |
- Micro Precision: 1.000 | |
- Weighted Precision: 1.000 | |
- Macro Recall: 1.000 | |
- Micro Recall: 1.000 | |
- Weighted Recall: 1.000 |