NikolayKozloff's picture
Upload README.md with huggingface_hub
6de1a46 verified
|
raw
history blame
4.02 kB
metadata
base_model: AI-MO/NuminaMath-7B-TIR
license: apache-2.0
pipeline_tag: text-generation
tags:
  - alignment-handbook
  - generated_from_trainer
  - llama-cpp
  - gguf-my-repo
widget:
  - example_title: Math problem
    messages:
      - role: user
        content: >-
          For how many values of the constant $k$ will the polynomial
          $x^{2}+kx+36$ have two distinct integer roots?
    output:
      text: >-
        ### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two
        distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
        r_2 \\).\n\n2. According to Vieta's formulas, the sum of the roots \\(
        r_1 + r_2 \\) is equal to \\(-k\\), and the product of the roots \\( r_1
        \\cdot r_2 \\) is equal to 36.\n\n3. To find the distinct integer pairs
        \\((r_1, r_2)\\) whose product is 36, we need to determine all pairs of
        integers \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\) and \\(
        r_1 \\neq r_2 \\).\n\n4. From the equation \\( r_1 + r_2 = -k \\), for
        each valid pair \\((r_1, r_2)\\), we can compute the corresponding value
        of \\( k \\).\n\n5. Finally, since we need the polynomial to have two
        distinct integer roots, we need to ensure that \\( r_1 \\) and \\( r_2
        \\) are distinct.\n\nLet's start by finding all pairs \\((r_1, r_2)\\)
        such that \\( r_1 \\cdot r_2 = 36 \\). We'll then determine the values
        of \\( k \\) and ensure the roots are distinct.\n```python\nimport
        itertools\n\n# Find all pairs (r1, r2) such that r1 * r2 =
        36\nproduct_36 = 36\nfactor_pairs = []\n\nfor i in range(1, product_36 +
        1):\n if product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0]
        != pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n#
        Calculate k for each pair and ensure distinct integer
        roots\nvalid_k_values = set()\nfor r1, r2 in factor_pairs:\n if r1 !=
        r2:\n k = -(r1 + r2)\n
        valid_k_values.add(k)\n\nprint((len(valid_k_values),
        sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15,
        -13])\n```\nThe distinct integer values of \\( k \\) that make the
        polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
        \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore, the number of such
        values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n
model-index:
  - name: NuminaMath-7B-TIR
    results: []

NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF

This model was converted to GGUF format from AI-MO/NuminaMath-7B-TIR using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -c 2048