finetuned-indian-food
This model is a fine-tuned version of Salesforce/blip-image-captioning-base on the indian_food_images dataset. It achieves the following results on the evaluation set:
- Loss: 2.1894
- Accuracy: 0.3454
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.9029 | 0.3003 | 100 | 2.9256 | 0.1031 |
2.8658 | 0.6006 | 200 | 2.7789 | 0.0967 |
2.678 | 0.9009 | 300 | 2.6917 | 0.1838 |
2.7905 | 1.2012 | 400 | 2.6983 | 0.1498 |
2.5964 | 1.5015 | 500 | 2.4903 | 0.2168 |
2.4471 | 1.8018 | 600 | 2.5496 | 0.1987 |
2.3428 | 2.1021 | 700 | 2.4333 | 0.2540 |
2.3367 | 2.4024 | 800 | 2.3813 | 0.2763 |
2.2419 | 2.7027 | 900 | 2.3520 | 0.2965 |
2.2023 | 3.0030 | 1000 | 2.2766 | 0.3050 |
2.2717 | 3.3033 | 1100 | 2.2615 | 0.3071 |
2.2311 | 3.6036 | 1200 | 2.2066 | 0.3284 |
2.0541 | 3.9039 | 1300 | 2.1894 | 0.3454 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NickoSELI/finetuned-indian-food
Base model
Salesforce/blip-image-captioning-base