zephyr-7b-uf-rlced-conifer-group-dpo-2e

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the data/zephyr_uf_rlced_conifer_ref dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2410
  • Rewards/chosen: -3.4514
  • Rewards/rejected: -8.7503
  • Rewards/accuracies: 0.8778
  • Rewards/margins: 5.2989
  • Logps/rejected: -1278.7679
  • Logps/chosen: -737.6100
  • Logits/rejected: 3.0512
  • Logits/chosen: 0.9415
  • Alpha0: 0.1957
  • Alpha1: 0.8043
  • Task Loss1: 0.1724
  • Task Excess Loss1: 0.0378
  • Excess Loss: 0.0340
  • Task Loss0: 0.5295
  • Task Excess Loss0: 0.0879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Alpha0 Alpha1 Task Loss1 Task Excess Loss1 Excess Loss Task Loss0 Task Excess Loss0
0.3541 0.1388 100 0.4194 -1.3743 -2.6267 0.8102 1.2524 -666.4093 -529.9026 -2.7580 -2.7843 0.8214 0.1786 0.3373 0.1973 0.1899 0.6883 0.2655
0.2214 0.2776 200 0.3480 -1.2450 -2.9488 0.8412 1.7038 -698.6146 -516.9692 0.1216 -0.2174 0.8786 0.1214 0.2866 0.1517 0.1250 0.5355 0.0929
0.2284 0.4164 300 0.3271 -1.7298 -3.6279 0.8515 1.8981 -766.5247 -565.4502 1.3769 0.5823 0.6417 0.3583 0.2721 0.1383 0.1130 0.5406 0.0794
0.1837 0.5552 400 0.3040 -1.7232 -4.0037 0.8553 2.2805 -804.1021 -564.7872 1.8300 0.7862 0.7891 0.2109 0.2517 0.1159 0.0949 0.5490 0.0796
0.1749 0.6940 500 0.2966 -1.7976 -4.1927 0.8637 2.3951 -823.0039 -572.2305 1.7164 0.5785 0.8057 0.1943 0.2448 0.1097 0.0856 0.5124 0.0570
0.1823 0.8328 600 0.3030 -1.7187 -3.9261 0.8647 2.2074 -796.3432 -564.3366 2.4921 1.3988 0.9053 0.0947 0.2541 0.1193 0.0922 0.5047 0.0596
0.1766 0.9715 700 0.2895 -1.6400 -4.2369 0.8647 2.5969 -827.4293 -556.4711 1.6749 0.1680 0.9622 0.0378 0.2417 0.1057 0.0812 0.5020 0.0532
0.1131 1.1103 800 0.2646 -2.7794 -6.7040 0.8647 3.9245 -1074.1326 -670.4117 2.3249 0.3844 0.0325 0.9675 0.1990 0.0653 0.0567 0.5372 0.0871
0.1006 1.2491 900 0.2490 -3.6465 -8.6692 0.8712 5.0227 -1270.6554 -757.1147 3.3211 1.0777 0.4760 0.5240 0.1852 0.0492 0.0420 0.5341 0.0967
0.0951 1.3879 1000 0.2470 -3.0354 -7.7369 0.8797 4.7015 -1177.4214 -696.0082 3.1614 0.9199 0.0150 0.9850 0.1756 0.0450 0.0382 0.5249 0.0834
0.0885 1.5267 1100 0.2435 -3.4543 -8.4740 0.8731 5.0197 -1251.1321 -737.8961 3.4589 1.3892 0.0151 0.9849 0.1747 0.0421 0.0368 0.5310 0.0887
0.1003 1.6655 1200 0.2416 -3.3615 -8.4285 0.875 5.0670 -1246.5889 -728.6184 2.9341 0.9100 0.0721 0.9279 0.1730 0.0396 0.0352 0.5285 0.0863
0.0865 1.8043 1300 0.2412 -3.3114 -8.4737 0.8769 5.1623 -1251.1091 -723.6140 2.9432 0.8628 0.0755 0.9245 0.1734 0.0388 0.0343 0.5272 0.0847
0.0893 1.9431 1400 0.2410 -3.4515 -8.7505 0.8769 5.2990 -1278.7848 -737.6204 3.0507 0.9407 0.6369 0.3631 0.1726 0.0379 0.0341 0.5306 0.0889

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NicholasCorrado/zephyr-7b-uf-rlced-conifer-group-dpo-2e

Finetuned
(311)
this model