Automatic Speech Recognition
Transformers
Safetensors
Vietnamese
whisper
Inference Endpoints
ViWhisper-medium / README.md
NhutP's picture
Update README.md
bc666ab verified
|
raw
history blame
3.08 kB
metadata
library_name: transformers
license: mit
datasets:
  - NhutP/VSV-1100
  - mozilla-foundation/common_voice_14_0
  - AILAB-VNUHCM/vivos
language:
  - vi
metrics:
  - wer
base_model:
  - openai/whisper-medium

Introduction

Training data

VSV-1100 T2S* CMV14-vi VIVOS VLSP2021 Total
1100 hours 11 hours 3.04 hours 13.94 hours 180 hours 1308 hours

* We use a text-to-speech model to generate sentences containing words that do not appear in our dataset.

WER result

CMV14-vi VIVOS VLSP2020-T1 VLSP2020-T2 VLSP2021-T1 VLSP2021-T2 Bud500
8.1 4.69 13.22 28.76 11.78 8.28 5.38

Usage

Inference

from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
# load model and processor
processor = WhisperProcessor.from_pretrained("NhutP/ViWhisper-medium")
model = WhisperForConditionalGeneration.from_pretrained("NhutP/ViWhisper-medium")
model.config.forced_decoder_ids = None

# load a sample
array, sampling_rate = librosa.load('path_to_audio', sr = 16000) # Load some audio sample
input_features = processor(array, sampling_rate=sampling_rate, return_tensors="pt").input_features 
# generate token ids
predicted_ids = model.generate(input_features)
# decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)

Use with pipeline

from transformers import pipeline
pipe = pipeline(
    "automatic-speech-recognition",
    model="NhutP/ViWhisper-medium",
    max_new_tokens=128,
    chunk_length_s=30,
    return_timestamps=False,
    device= '...' # 'cpu' or 'cuda'
) 
output = pipe(path_to_audio_samplingrate_16000)['text']

Citation

@misc{VSV-1100,
    author = {Pham Quang Nhut and Duong Pham Hoang Anh and Nguyen Vinh Tiep},
    title = {VSV-1100: Vietnamese social voice dataset},
    url = {https://github.com/NhutP/VSV-1100},
    year = {2024}
}

Also, please give us a star on github: https://github.com/NhutP/ViWhisper if you find our project useful

Contact me at: [email protected] (Pham Quang Nhut)