Llama3-20240602

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4100

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 0.03
  • training_steps: 960
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 0.1356 40 1.3411
No log 0.2712 80 1.3121
1.335 0.4068 120 1.2957
1.335 0.5424 160 1.2854
1.258 0.6780 200 1.2772
1.258 0.8136 240 1.2706
1.258 0.9492 280 1.2642
1.2379 1.0847 320 1.2746
1.2379 1.2203 360 1.2682
1.1301 1.3559 400 1.2697
1.1301 1.4915 440 1.2713
1.1301 1.6271 480 1.2671
1.1256 1.7627 520 1.2633
1.1256 1.8983 560 1.2620
1.0987 2.0339 600 1.2888
1.0987 2.1695 640 1.3127
1.0987 2.3051 680 1.3148
0.9445 2.4407 720 1.3093
0.9445 2.5763 760 1.3086
0.9553 2.7119 800 1.3095
0.9553 2.8475 840 1.3029
0.9553 2.9831 880 1.3066
0.9298 3.1186 920 1.4147
0.9298 3.2542 960 1.4100

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Nhut/Llama3-20240602

Adapter
(665)
this model