|
--- |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
language: |
|
- vi |
|
--- |
|
|
|
# NghiemAbe/Vi-Legal-Bi-Encoder-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from pyvi.ViTokenizer import tokenize |
|
sentences = [tokenize("This is an example sentence"), tokenize("Each sentence is converted")] |
|
|
|
model = SentenceTransformer('NghiemAbe/Vi-Legal-Bi-Encoder-v2') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = [tokenize("This is an example sentence"), tokenize("Each sentence is converted")] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('NghiemAbe/Vi-Legal-Bi-Encoder-v2') |
|
model = AutoModel.from_pretrained('NghiemAbe/Vi-Legal-Bi-Encoder-v2') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
I evaluated my [Dev-Legal-Dataset](https://huggingface.co/datasets/NghiemAbe/dev_legal) and here are the results: |
|
|
|
| Model | R@1 | R@5 | R@10 | R@20 | R@100 | MRR@5 | MRR@10 | MRR@20 | MRR@100 | Avg | |
|
|------------------------------------------------------------------------|------|------|------|------|-------|-------|--------|--------|---------|------| |
|
| keepitreal/vietnamese-sbert | 0.278| 0.552| 0.649| 0.734| 0.842 | 0.396 | 0.409 | 0.415 | 0.417 | 0.521| |
|
| sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | 0.314| 0.486| 0.585| 0.662| 0.854 | 0.395 | 0.409 | 0.414 | 0.419 | 0.504| |
|
| sentence-transformers/paraphrase-multilingual-mpnet-base-v2 | 0.354| 0.553| 0.646| 0.750| 0.896 | 0.449 | 0.461 | 0.468 | 0.472 | 0.561| |
|
| intfloat/multilingual-e5-small | 0.488| 0.746| 0.835| 0.906| 0.962 | 0.610 | 0.620 | 0.624 | 0.625 | 0.713| |
|
| intfloat/multilingual-e5-base | 0.466| 0.740| 0.840| 0.907| 0.952 | 0.596 | 0.608 | 0.612 | 0.613 | 0.704| |
|
| bkai-foundation-models/vietnamese-bi-encoder | 0.644| 0.881| 0.924| 0.954| 0.986 | 0.752 | 0.757 | 0.758 | 0.759 | 0.824| |
|
| Vi-Legal-Bi-Encoder-v2 | 0.720| 0.884| 0.935| 0.963| 0.986 | 0.796 | 0.802 | 0.803 | 0.804 | 0.855| |
|
|