Nexesenex's picture
Adding Evaluation Results (#1)
86ade45 verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - cognitivecomputations/Dolphin3.0-Llama3.2-1B
  - pankajmathur/orca_mini_v9_6_1B-instruct
  - artificialguybr/LLAMA3.2-1B-Synthia-II-Redmond
model-index:
  - name: Llama_3.2_1b_AquaSyn_0.11
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 24.31
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Nexesenex/Llama_3.2_1b_AquaSyn_0.11
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 3.65
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Nexesenex/Llama_3.2_1b_AquaSyn_0.11
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 2.34
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Nexesenex/Llama_3.2_1b_AquaSyn_0.11
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 2.01
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Nexesenex/Llama_3.2_1b_AquaSyn_0.11
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.6
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Nexesenex/Llama_3.2_1b_AquaSyn_0.11
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.29
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Nexesenex/Llama_3.2_1b_AquaSyn_0.11
          name: Open LLM Leaderboard

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the Model Stock merge method using artificialguybr/LLAMA3.2-1B-Synthia-II-Redmond as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

merge_method: model_stock
models:
  - model: pankajmathur/orca_mini_v9_6_1B-instruct
    parameters:
      weight: 1.0
  - model: cognitivecomputations/Dolphin3.0-Llama3.2-1B
    parameters:
      weight: 1.0
base_model: artificialguybr/LLAMA3.2-1B-Synthia-II-Redmond
dtype: bfloat16
normalize: false
chat_template: auto
tokenizer:
  source: union

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 5.87
IFEval (0-Shot) 24.31
BBH (3-Shot) 3.65
MATH Lvl 5 (4-Shot) 2.34
GPQA (0-shot) 2.01
MuSR (0-shot) 1.60
MMLU-PRO (5-shot) 1.29