Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: ./qwq
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

hub_model_id: NewEden/32b-mag
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: PocketDoc/Dans-Personamaxx-Logs
    type: dan-chat-advanced
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: dan-chat-advanced
  - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
    type: dan-chat-advanced
  - path: anthracite-org/nopm_claude_writing_fixed
    type: dan-chat-advanced
  - path: anthracite-org/kalo_opus_misc_240827
    type: dan-chat-advanced
  - path: anthracite-org/kalo_misc_part2
    type: dan-chat-advanced
  - path: NewEden/Claude-Instruct-5K
    type: dan-chat-advanced
  - path: NewEden/Claude-Instruct-2.7K
    type: dan-chat-advanced
dataset_prepared_path: prepared_data
val_set_size: 0.0
output_dir: ./qwq-mag
sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true

wandb_project: qwq
wandb_entity:
wandb_watch:
wandb_name: mag-attempt-01
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 6e-6
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 40
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.02
fsdp:
fsdp_config:
special_tokens:

32b-mag

This model was trained from scratch on the PocketDoc/Dans-Personamaxx-Logs, the anthracite-org/kalo-opus-instruct-22k-no-refusal, the lodrick-the-lafted/kalo-opus-instruct-3k-filtered, the anthracite-org/nopm_claude_writing_fixed, the anthracite-org/kalo_opus_misc_240827, the anthracite-org/kalo_misc_part2, the NewEden/Claude-Instruct-5K and the NewEden/Claude-Instruct-2.7K datasets.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 2.0

Training results

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
1.56B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Datasets used to train NewEden/qwq-32b-magnum-v2-v1