language:
- en
license: apache-2.0
library_name: transformers
datasets:
- Intel/orca_dpo_pairs
- mlabonne/chatml_dpo_pairs
model-index:
- name: neuronovo-9B-v0.4
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.44
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.33
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.24
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.07
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.66
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.77
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4
name: Open LLM Leaderboard
More information about previous Neuronovo/neuronovo-9B-v0.2 version available here: ๐Don't stop DPOptimizing!
Author: Jan Kocoล ๐LinkedIn ๐Google Scholar ๐ResearchGate
Changes concerning Neuronovo/neuronovo-9B-v0.2:
Training Dataset: In addition to the Intel/orca_dpo_pairs dataset, this version incorporates a mlabonne/chatml_dpo_pairs. The combined datasets enhance the model's capabilities in dialogues and interactive scenarios, further specializing it in natural language understanding and response generation.
Tokenizer and Formatting: The tokenizer now originates directly from the Neuronovo/neuronovo-9B-v0.2 model.
Training Configuration: The training approach has shifted from using
max_steps=200
tonum_train_epochs=1
. This represents a change in the training strategy, focusing on epoch-based training rather than a fixed number of steps.Learning Rate: The learning rate has been reduced to a smaller value of
5e-8
. This finer learning rate allows for more precise adjustments during the training process, potentially leading to better model performance.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.42 |
AI2 Reasoning Challenge (25-Shot) | 72.44 |
HellaSwag (10-Shot) | 88.33 |
MMLU (5-Shot) | 65.24 |
TruthfulQA (0-shot) | 71.07 |
Winogrande (5-shot) | 80.66 |
GSM8k (5-shot) | 62.77 |