NeuralNovel/Senzu-7B-v0.1-DPO
Embracing a quiet storm ..
Model Details
This model is Senzu-7B-v0.1 a fine-tuned version of mistralai/Mistral-7B-v0.1
DPO Trained on the Neural-DPO dataset.
This model excels at character based roleplay.
Training Parameters
base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: practical-dreamer/RPGPT_PublicDomain-alpaca
type: alpaca
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
datasets:
- path: shuyuej/metamath_gsm8k
type: jeopardy
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
datasets:
- path: NeuralNovel/Neural-DPO
type:
system_prompt: ""
field_system: system
field_instruction: chosen
field_output: chosen
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 0
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.2061 | 0.01 | 1 | 0.3139 |
0.0 | 0.25 | 32 | 0.0000 |
0.0 | 0.5 | 64 | 0.0010 |
0.0 | 0.76 | 96 | 0.0000 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 61.90 |
AI2 Reasoning Challenge (25-Shot) | 66.72 |
HellaSwag (10-Shot) | 84.34 |
MMLU (5-Shot) | 62.12 |
TruthfulQA (0-shot) | 45.29 |
Winogrande (5-shot) | 79.95 |
GSM8k (5-shot) | 32.98 |
- Downloads last month
- 47
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for NeuralNovel/Senzu-7B-v0.1-DPO
Base model
mistralai/Mistral-7B-v0.1