|
--- |
|
library_name: transformers |
|
tags: |
|
- persian |
|
- whisper-base |
|
- whisper |
|
- farsi |
|
- Neura |
|
- NeuraSpeech |
|
license: apache-2.0 |
|
language: |
|
- fa |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
|
|
# |
|
|
|
<p align="center"> |
|
<img src="neura_speech_2.png" width=512 height=256 /> |
|
</p> |
|
|
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
## Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
- **Developed by:** Neura company |
|
- **Funded by:** Neura |
|
- **Model type:** Whisper Base |
|
- **Language(s) (NLP):** Persian |
|
|
|
## Model Architecture |
|
|
|
Whisper is a Transformer based encoder-decoder model, also referred to as a sequence-to-sequence model. |
|
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. |
|
|
|
## Uses |
|
Check out the Google Colab demo to run NeuraSpeech ASR on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12d7zecB94ah7ZHKnDtJF58saLzdkZAj3#scrollTo=oNt032WVkQUa) |
|
|
|
|
|
|
|
make sure these packages are installed: |
|
|
|
```python |
|
from IPython.display import Audio, display |
|
display(Audio('persian_audio.mp3', rate = 32_000,autoplay=True)) |
|
``` |
|
|
|
```python |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
import librosa |
|
|
|
# load model and processor |
|
processor = WhisperProcessor.from_pretrained("Neurai/NeuraSpeech_WhisperBase") |
|
model = WhisperForConditionalGeneration.from_pretrained("Neurai/NeuraSpeech_WhisperBase") |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe") |
|
|
|
array, sample_rate = librosa.load('persian_audio.mp3', sr=16000,mono=True) |
|
sr = 16000 |
|
array = librosa.to_mono(array) |
|
array = librosa.resample(array, orig_sr=sample_rate, target_sr=16000) |
|
input_features = processor(array, sampling_rate=sr, return_tensors="pt").input_features |
|
|
|
# generate token ids |
|
predicted_ids = model.generate(input_features) |
|
# decode token ids to text |
|
transcription = processor.batch_decode(predicted_ids,) |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
print(transcription) |
|
|
|
``` |
|
trascribed text : |
|
``` |
|
او خواهان آزاد کردن بردگان بود |
|
``` |
|
|
|
|
|
## More Information |
|
https://neura.info |
|
|
|
## Model Card Authors |
|
Esmaeil Zahedi, Mohsen Yazdinejad |
|
|
|
## Model Card Contact |
|
[email protected] |