|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
language: en |
|
license: apache-2.0 |
|
--- |
|
|
|
# PubMedBERT Embeddings Matryoshka |
|
|
|
This is a version of [PubMedBERT Embeddings](https://huggingface.co/NeuML/pubmedbert-base-embeddings) with [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) applied. This enables dynamic embeddings sizes of `64`, `128`, `256`, `384`, `512` and the full size of `768`. It's important to note while this method saves space, the same computational resources are used regardless of the dimension size. |
|
|
|
Sentence Transformers 2.4 added support for Matryoshka Embeddings. More can be read in [this blog post](https://huggingface.co/blog/matryoshka). |
|
|
|
## Usage (txtai) |
|
|
|
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG). |
|
|
|
```python |
|
import txtai |
|
|
|
# New embeddings with requested dimensionality |
|
embeddings = txtai.Embeddings( |
|
path="neuml/pubmedbert-base-embeddings-matryoshka", |
|
content=True, |
|
dimensionality=256 |
|
) |
|
embeddings.index(documents()) |
|
|
|
# Run a query |
|
embeddings.search("query to run") |
|
``` |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Alternatively, the model can be loaded with [sentence-transformers](https://www.SBERT.net). |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer("neuml/pubmedbert-base-embeddings-matryoshka") |
|
embeddings = model.encode(sentences) |
|
|
|
# Requested dimensionality |
|
dimensionality = 256 |
|
|
|
print(embeddings[:, :dimensionality]) |
|
``` |
|
|
|
## Usage (Hugging Face Transformers) |
|
|
|
The model can also be used directly with Transformers. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def meanpooling(output, mask): |
|
embeddings = output[0] # First element of model_output contains all token embeddings |
|
mask = mask.unsqueeze(-1).expand(embeddings.size()).float() |
|
return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9) |
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained("neuml/pubmedbert-base-embeddings-matryoshka") |
|
model = AutoModel.from_pretrained("neuml/pubmedbert-base-embeddings-matryoshka") |
|
|
|
# Tokenize sentences |
|
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
output = model(**inputs) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
embeddings = meanpooling(output, inputs['attention_mask']) |
|
|
|
# Requested dimensionality |
|
dimensionality = 256 |
|
|
|
print("Sentence embeddings:") |
|
print(embeddings[:, :dimensionality]) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
Performance of this model compared to the top base models on the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) is shown below. A popular smaller model was also evaluated along with the most downloaded PubMed similarity model on the Hugging Face Hub. |
|
|
|
The following datasets were used to evaluate model performance. |
|
|
|
- [PubMed QA](https://huggingface.co/datasets/pubmed_qa) |
|
- Subset: pqa_labeled, Split: train, Pair: (question, long_answer) |
|
- [PubMed Subset](https://huggingface.co/datasets/zxvix/pubmed_subset_new) |
|
- Split: test, Pair: (title, text) |
|
- [PubMed Summary](https://huggingface.co/datasets/scientific_papers) |
|
- Subset: pubmed, Split: validation, Pair: (article, abstract) |
|
|
|
Evaluation results from the original model are shown below for reference. The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric. |
|
|
|
| Model | PubMed QA | PubMed Subset | PubMed Summary | Average | |
|
| ----------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- | |
|
| [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 90.40 | 95.86 | 94.07 | 93.44 | |
|
| [bge-base-en-v1.5](https://hf.co/BAAI/bge-large-en-v1.5) | 91.02 | 95.60 | 94.49 | 93.70 | |
|
| [gte-base](https://hf.co/thenlper/gte-base) | 92.97 | 96.83 | 96.24 | 95.35 | |
|
| [**pubmedbert-base-embeddings**](https://hf.co/neuml/pubmedbert-base-embeddings) | **93.27** | **97.07** | **96.58** | **95.64** | |
|
| [S-PubMedBert-MS-MARCO](https://hf.co/pritamdeka/S-PubMedBert-MS-MARCO) | 90.86 | 93.33 | 93.54 | 92.58 | |
|
|
|
See the table below for evaluation results per dimension for `pubmedbert-base-embeddings-matryoshka`. |
|
|
|
| Model | PubMed QA | PubMed Subset | PubMed Summary | Average | |
|
| --------------------| --------- | ------------- | -------------- | --------- | |
|
| Dimensions = 64 | 92.16 | 95.85 | 95.67 | 94.56 | |
|
| Dimensions = 128 | 92.80 | 96.44 | 96.22 | 95.15 | |
|
| Dimensions = 256 | 93.11 | 96.68 | 96.53 | 95.44 | |
|
| Dimensions = 384 | 93.42 | 96.79 | 96.61 | 95.61 | |
|
| Dimensions = 512 | 93.37 | 96.87 | 96.61 | 95.62 | |
|
| **Dimensions = 768** | **93.53** | **96.95** | **96.70** | **95.73** | |
|
|
|
This model performs slightly better overall compared to the original model. |
|
|
|
The bigger takeaway is how competitive it is at lower dimensions. For example, `Dimensions = 256` performs better than all the other models originally tested above. Even `Dimensions = 64` performs better than `all-MiniLM-L6-v2` and `bge-base-en-v1.5`. |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 20191 with parameters: |
|
``` |
|
{'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: |
|
``` |
|
{'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [768, 512, 384, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1, 1]} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 1, |
|
"evaluation_steps": 500, |
|
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 10000, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|