inference: false
library_name: transformers
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
- el
- fa
- pl
- id
- cs
- he
- hi
- nl
- ro
- ru
- tr
- uk
- vi
license: cc-by-nc-4.0
extra_gated_prompt: >-
By submitting this form, you agree to the [License
Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the
information you provide will be collected, used, and shared in accordance with
Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll receive email
updates about C4AI and Cohere research, events, products and services. You can
unsubscribe at any time.
extra_gated_fields:
Name: text
Affiliation: text
Country:
type: select
options:
- Aruba
- Afghanistan
- Angola
- Anguilla
- Åland Islands
- Albania
- Andorra
- United Arab Emirates
- Argentina
- Armenia
- American Samoa
- Antarctica
- French Southern Territories
- Antigua and Barbuda
- Australia
- Austria
- Azerbaijan
- Burundi
- Belgium
- Benin
- Bonaire Sint Eustatius and Saba
- Burkina Faso
- Bangladesh
- Bulgaria
- Bahrain
- Bahamas
- Bosnia and Herzegovina
- Saint Barthélemy
- Belarus
- Belize
- Bermuda
- Plurinational State of Bolivia
- Brazil
- Barbados
- Brunei-Darussalam
- Bhutan
- Bouvet-Island
- Botswana
- Central African Republic
- Canada
- Cocos (Keeling) Islands
- Switzerland
- Chile
- China
- Côte-dIvoire
- Cameroon
- Democratic Republic of the Congo
- Cook Islands
- Colombia
- Comoros
- Cabo Verde
- Costa Rica
- Cuba
- Curaçao
- Christmas Island
- Cayman Islands
- Cyprus
- Czechia
- Germany
- Djibouti
- Dominica
- Denmark
- Dominican Republic
- Algeria
- Ecuador
- Egypt
- Eritrea
- Western Sahara
- Spain
- Estonia
- Ethiopia
- Finland
- Fiji
- Falkland Islands (Malvinas)
- France
- Faroe Islands
- Federated States of Micronesia
- Gabon
- United Kingdom
- Georgia
- Guernsey
- Ghana
- Gibraltar
- Guinea
- Guadeloupe
- Gambia
- Guinea Bissau
- Equatorial Guinea
- Greece
- Grenada
- Greenland
- Guatemala
- French Guiana
- Guam
- Guyana
- Hong Kong
- Heard Island and McDonald Islands
- Honduras
- Croatia
- Haiti
- Hungary
- Indonesia
- Isle of Man
- India
- British Indian Ocean Territory
- Ireland
- Islamic Republic of Iran
- Iraq
- Iceland
- Israel
- Italy
- Jamaica
- Jersey
- Jordan
- Japan
- Kazakhstan
- Kenya
- Kyrgyzstan
- Cambodia
- Kiribati
- Saint-Kitts-and-Nevis
- South Korea
- Kuwait
- Lao-Peoples-Democratic-Republic
- Lebanon
- Liberia
- Libya
- Saint-Lucia
- Liechtenstein
- Sri Lanka
- Lesotho
- Lithuania
- Luxembourg
- Latvia
- Macao
- Saint Martin (French-part)
- Morocco
- Monaco
- Republic of Moldova
- Madagascar
- Maldives
- Mexico
- Marshall Islands
- North Macedonia
- Mali
- Malta
- Myanmar
- Montenegro
- Mongolia
- Northern Mariana Islands
- Mozambique
- Mauritania
- Montserrat
- Martinique
- Mauritius
- Malawi
- Malaysia
- Mayotte
- Namibia
- New Caledonia
- Niger
- Norfolk Island
- Nigeria
- Nicaragua
- Niue
- Netherlands
- Norway
- Nepal
- Nauru
- New Zealand
- Oman
- Pakistan
- Panama
- Pitcairn
- Peru
- Philippines
- Palau
- Papua New Guinea
- Poland
- Puerto Rico
- North Korea
- Portugal
- Paraguay
- State of Palestine
- French Polynesia
- Qatar
- Réunion
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Sudan
- Senegal
- Singapore
- South Georgia and the South Sandwich Islands
- Saint Helena Ascension and Tristan da Cunha
- Svalbard and Jan Mayen
- Solomon Islands
- Sierra Leone
- El Salvador
- San Marino
- Somalia
- Saint Pierre and Miquelon
- Serbia
- South Sudan
- Sao Tome and Principe
- Suriname
- Slovakia
- Slovenia
- Sweden
- Eswatini
- Sint Maarten (Dutch-part)
- Seychelles
- Syrian Arab Republic
- Turks and Caicos Islands
- Chad
- Togo
- Thailand
- Tajikistan
- Tokelau
- Turkmenistan
- Timor Leste
- Tonga
- Trinidad and Tobago
- Tunisia
- Turkey
- Tuvalu
- Taiwan
- United Republic of Tanzania
- Uganda
- Ukraine
- United States Minor Outlying Islands
- Uruguay
- United-States
- Uzbekistan
- Holy See (Vatican City State)
- Saint Vincent and the Grenadines
- Bolivarian Republic of Venezuela
- Virgin Islands British
- Virgin Islands U.S.
- VietNam
- Vanuatu
- Wallis and Futuna
- Samoa
- Yemen
- South Africa
- Zambia
- Zimbabwe
I agree to use this model for non-commercial use ONLY: checkbox
base_model:
- CohereForAI/aya-23-8B
Model Card for Aya-23-8B
Try Aya 23
You can try out Aya 23 (35B) before downloading the weights in our hosted Hugging Face Space here.
Model Summary
Aya 23 is an open weights research release of an instruction fine-tuned model with highly advanced multilingual capabilities. Aya 23 focuses on pairing a highly performant pre-trained Command family of models with the recently released Aya Collection. The result is a powerful multilingual large language model serving 23 languages.
This model card corresponds to the 8-billion version of the Aya 23 model. We also released a 35-billion version which you can find here.
We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
Developed by: Cohere For AI and Cohere
- Point of Contact: Cohere For AI: cohere.for.ai
- License: CC-BY-NC, requires also adhering to C4AI's Acceptable Use Policy
- Model: aya-23-8B
- Model Size: 8 billion parameters
Usage
Please install transformers from the source repository that includes the necessary changes for this model
# pip install transformers==4.41.1
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/aya-23-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Format message with the command-r-plus chat template
messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
Example Notebook
This notebook showcases a detailed use of Aya 23 (8B) including inference and fine-tuning with QLoRA.
Model Details
Input: Models input text only.
Output: Models generate text only.
Model Architecture: Aya-23-8B is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model is fine-tuned (IFT) to follow human instructions.
Languages covered: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
Context length: 8192
Evaluation
Please refer to the Aya 23 technical report for further details about the base model, data, instruction tuning, and evaluation.
Model Card Contact
For errors or additional questions about details in this model card, contact [email protected].
Terms of Use
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a CC-BY-NC License with an acceptable use addendum, and also requires adhering to C4AI's Acceptable Use Policy.
Try the model today
You can try Aya 23 in the Cohere playground here. You can also use it in our dedicated Hugging Face Space here.
Citation info
@misc{aryabumi2024aya,
title={Aya 23: Open Weight Releases to Further Multilingual Progress},
author={Viraat Aryabumi and John Dang and Dwarak Talupuru and Saurabh Dash and David Cairuz and Hangyu Lin and Bharat Venkitesh and Madeline Smith and Kelly Marchisio and Sebastian Ruder and Acyr Locatelli and Julia Kreutzer and Nick Frosst and Phil Blunsom and Marzieh Fadaee and Ahmet Üstün and Sara Hooker},
year={2024},
eprint={2405.15032},
archivePrefix={arXiv},
primaryClass={cs.CL}
}