YAML Metadata Error: "language[0]" must only contain lowercase characters
YAML Metadata Error: "language[0]" with value "nb-NO" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
YAML Metadata Error: "tags[4]" must be a string

wav2vec2-xls-r-1b-npsc

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the NbAiLab/NPSC (16K_mp3_bokmaal) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1598
  • WER: 0.0966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8361 0.32 500 0.6304 0.4970
0.5703 0.64 1000 0.3195 0.2775
0.5451 0.97 1500 0.2700 0.2246
0.47 1.29 2000 0.2564 0.2329
0.4063 1.61 2500 0.2459 0.2099
0.374 1.93 3000 0.2175 0.1894
0.3297 2.26 3500 0.2036 0.1755
0.3145 2.58 4000 0.1957 0.1757
0.3989 2.9 4500 0.1923 0.1723
0.271 3.22 5000 0.1889 0.1649
0.2758 3.55 5500 0.1768 0.1588
0.2683 3.87 6000 0.1720 0.1534
0.2341 4.19 6500 0.1689 0.1471
0.2316 4.51 7000 0.1706 0.1405
0.2383 4.84 7500 0.1637 0.1426
0.2148 5.16 8000 0.1584 0.1347
0.2085 5.48 8500 0.1601 0.1387
0.2944 5.8 9000 0.1566 0.1294
0.1944 6.13 9500 0.1494 0.1271
0.1853 6.45 10000 0.1561 0.1247
0.235 6.77 10500 0.1461 0.1215
0.2286 7.09 11000 0.1447 0.1167
0.1781 7.41 11500 0.1502 0.1199
0.1714 7.74 12000 0.1425 0.1179
0.1725 8.06 12500 0.1427 0.1173
0.143 8.38 13000 0.1448 0.1142
0.154 8.7 13500 0.1392 0.1104
0.1447 9.03 14000 0.1404 0.1094
0.1471 9.35 14500 0.1404 0.1088
0.1479 9.67 15000 0.1414 0.1133
0.1607 9.99 15500 0.1458 0.1171
0.166 10.32 16000 0.1652 0.1264
0.188 10.64 16500 0.1713 0.1322
0.1461 10.96 17000 0.1423 0.1111
0.1289 11.28 17500 0.1388 0.1097
0.1273 11.61 18000 0.1438 0.1074
0.1317 11.93 18500 0.1312 0.1066
0.1448 12.25 19000 0.1446 0.1042
0.1424 12.57 19500 0.1386 0.1015
0.1392 12.89 20000 0.1379 0.1005
0.1408 13.22 20500 0.1408 0.0992
0.1239 13.54 21000 0.1338 0.0968
0.1244 13.86 21500 0.1335 0.0957
0.1254 14.18 22000 0.1382 0.0950
0.1597 14.51 22500 0.1544 0.0970
0.1566 14.83 23000 0.1589 0.0963

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu113
  • Datasets 1.18.3.dev0
  • Tokenizers 0.11.0
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train NbAiLab/wav2vec2-xls-r-1b-npsc-bokmaal

Evaluation results