Nayana-IR-colpali_v1_3-combined-15k-4bit-LoRA

This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the Nayana-cognitivelab/Nayana-IR-DescVQA-finetune-hi-47k, Nayana-cognitivelab/Nayana-IR-DescVQA-finetune-kn-47k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2067
  • Model Preparation Time: 0.0054

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time
No log 0.0011 1 0.7311 0.0054
0.3759 0.1067 100 0.3940 0.0054
0.3167 0.2133 200 0.3363 0.0054
0.2865 0.32 300 0.2893 0.0054
0.2177 0.4267 400 0.2825 0.0054
0.2268 0.5333 500 0.2437 0.0054
0.2296 0.64 600 0.2280 0.0054
0.1723 0.7467 700 0.2354 0.0054
0.1138 0.8533 800 0.2218 0.0054
0.1929 0.96 900 0.2086 0.0054
0.1176 1.0661 1000 0.2076 0.0054
0.1426 1.1728 1100 0.2061 0.0054
0.1247 1.2795 1200 0.2101 0.0054
0.0976 1.3861 1300 0.2087 0.0054
0.1236 1.4928 1400 0.2066 0.0054

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Nayana-cognitivelab/Nayana-IR-colpali_v1_3-combined-15k-4bit-LoRA

Finetuned
(43)
this model