GemOmniscien-ties
GemOmniscien-ties is a merge of the following models using mergekit:
🧩 Configuration
```yaml models:
- model: Warit2/GemOmniscien parameters: density: 0.5 weight: 0.5
- model: google/gemma-2b-it parameters: density: 0.5 weight: 0.5 # weight gradient merge_method: ties base_model: Warit2/GemOmniscien parameters: normalize: true int8_mask: true dtype: bfloat16
models:
- model: unsloth/gemma-7b-bnb-4bit
layer_range: [0, 32]
# no parameters necessary for base model
- model: mistralai/Mistral-7B-v0.1
layer_range: [24, 32]
merge_method: passthrough
# base_model: unsloth/gemma-7b-bnb-4bit
parameters:
normalize: true
int8_mask: true
dtype: float16
slices:
- sources:
- model: unsloth/gemma-2b-bnb-4bit
layer_range: [0, 16]
- sources:
- model: NousResearch/Nous-Hermes-llama-2-7b
layer_range: [0, 22]
merge_method: passthrough
dtype: bfloat16
models:
- model: unsloth/gemma-2b-bnb-4bit
parameters:
density: 0.53
weight: 0.45
- model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
parameters:
weight: 0.5
merge_method: ties
base_model: unsloth/gemma-2b-bnb-4bit
parameters:
int8_mask: true
dtype: bfloat16
```
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.