NaeemCSECUET18's picture
End of training
e8d181f verified
|
raw
history blame
3.04 kB
metadata
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-MLTC-rob
    results: []

xlm-roberta-base-MLTC-rob

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3645
  • F1: 0.8629
  • F1 Weighted: 0.8632
  • Roc Auc: 0.8598
  • Accuracy: 0.6067
  • Hamming Loss: 0.1401
  • Jaccard Score: 0.7588
  • Zero One Loss: 0.3933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 F1 Weighted Roc Auc Accuracy Hamming Loss Jaccard Score Zero One Loss
0.5856 1.0 73 0.5884 0.7201 0.6619 0.6835 0.3393 0.3162 0.5627 0.6607
0.5053 2.0 146 0.4688 0.7718 0.7159 0.7712 0.4139 0.2288 0.6284 0.5861
0.3929 3.0 219 0.4002 0.8410 0.8413 0.8334 0.5347 0.1665 0.7256 0.4653
0.3293 4.0 292 0.3816 0.8471 0.8453 0.8399 0.5527 0.1600 0.7348 0.4473
0.3242 5.0 365 0.3607 0.8550 0.8538 0.8515 0.5784 0.1485 0.7467 0.4216
0.3228 6.0 438 0.3776 0.8495 0.8462 0.8437 0.5707 0.1562 0.7384 0.4293
0.2713 7.0 511 0.4086 0.8453 0.8412 0.8373 0.5630 0.1626 0.7320 0.4370
0.2519 8.0 584 0.3711 0.8534 0.8531 0.8489 0.5861 0.1510 0.7443 0.4139
0.2724 9.0 657 0.3645 0.8629 0.8632 0.8598 0.6067 0.1401 0.7588 0.3933
0.2484 10.0 730 0.3669 0.8586 0.8585 0.8553 0.5964 0.1446 0.7522 0.4036

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1