|
--- |
|
base_model: csebuetnlp/banglabert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: banglabert-MLTC-BB |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# banglabert-MLTC-BB |
|
|
|
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3626 |
|
- F1: 0.8666 |
|
- Roc Auc: 0.8624 |
|
- Accuracy: 0.5861 |
|
- Hamming Loss: 0.1375 |
|
- Jaccard Score: 0.7646 |
|
- Zero One Loss: 0.4139 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| |
|
| 0.4962 | 1.0 | 73 | 0.4868 | 0.8020 | 0.7962 | 0.4730 | 0.2037 | 0.6694 | 0.5270 | |
|
| 0.3992 | 2.0 | 146 | 0.3993 | 0.8420 | 0.8386 | 0.5656 | 0.1613 | 0.7272 | 0.4344 | |
|
| 0.3163 | 3.0 | 219 | 0.3647 | 0.8616 | 0.8586 | 0.5810 | 0.1414 | 0.7569 | 0.4190 | |
|
| 0.2545 | 4.0 | 292 | 0.3626 | 0.8666 | 0.8624 | 0.5861 | 0.1375 | 0.7646 | 0.4139 | |
|
| 0.2464 | 5.0 | 365 | 0.3537 | 0.8626 | 0.8612 | 0.5835 | 0.1388 | 0.7584 | 0.4165 | |
|
| 0.2534 | 6.0 | 438 | 0.3591 | 0.8600 | 0.8566 | 0.5707 | 0.1433 | 0.7544 | 0.4293 | |
|
| 0.194 | 7.0 | 511 | 0.3525 | 0.8644 | 0.8624 | 0.5938 | 0.1375 | 0.7612 | 0.4062 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|