Na0s's picture
Update README.md
bd14a7c verified
---
library_name: transformers
datasets:
- Na0s/sft-ready-Text-Generation-Augmented-Data
language:
- en
base_model:
- mistralai/Mixtral-8x7B-Instruct-v0.1
pipeline_tag: text-generation
---
<a href="https://ibb.co/G5j5XNh"><img src="https://i.ibb.co/2kBkwHb/photo-model.webp" alt="photo-model" border="0"></a>
# Model Card for Model ID
LoRA fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 only targeting the gate/router.
#### Training Hyperparameters
- **Training regime:**
```python
quantization_config = transformers.BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", truncation=True, padding=True, padding_side="right")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", quantization_config=quantization_config)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model = prepare_model_for_kbit_training(model)
config = LoraConfig(r = 4,
lora_alpha=4,
target_modules = ["gate"],
lora_dropout=0.1
)
lora_model = get_peft_model(model, config)
lora_model.print_trainable_parameters()
dataset = load_dataset("Na0s/sft-ready-Text-Generation-Augmented-Data", split="train")
trainer = SFTTrainer(
model = lora_model,
tokenizer = tokenizer,
train_dataset = dataset,
packing = True,
args = TrainingArguments(
per_device_train_batch_size = 1,
gradient_accumulation_steps = 16,
group_by_length = True,
warmup_steps = 5,
bf16 = True,
max_steps=5000,
learning_rate = 2e-4,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "cosine",
seed = 3407,
eval_strategy="no",
do_eval=False,
output_dir = "./outputs",
push_to_hub=True,
remove_unused_columns=False,
)
)
```
#### Metrics and results:
Upcoming.
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
## Technical Specifications
### Model Architecture and Objective
The objective of the fine-tuning of this MoE based transformer is to implement the expert pruning detailed in the following paper: [A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts](https://arxiv.org/abs/2405.16646)