Model Details
- Model Description: Speech style converter model based on gogamza/kobart-base-v2
- Developed by: Juhwan, Lee and Jisu, Kim, TakSung Heo, and Minsu Jeong
- Model Type: Text-generation
- Language: Korean
- License: CC-BY-4.0
Dataset
- korean SmileStyle Dataset
- Randomly split train/valid dataset (9:1)
BLEU Score
- 25.35
Uses
This model can be used for convert speech style
- formal: λ¬Έμ΄μ²΄
- informal: ꡬμ΄μ²΄
- android: μλλ‘μ΄λ
- azae: μμ¬
- chat: μ±ν
- choding: μ΄λ±νμ
- emoticon: μ΄λͺ¨ν°μ½
- enfp: enfp
- gentle: μ μ¬
- halbae: ν μλ²μ§
- halmae: ν λ¨Έλ
- joongding: μ€νμ
- king: μ
- naruto: λ루ν
- seonbi: μ λΉ
- sosim: μμ¬ν
- translator: λ²μκΈ°
from transformers import pipeline
model = "KoJLabs/bart-speech-style-converter"
tokenizer = AutoTokenizer.from_pretrained(model)
nlg_pipeline = pipeline('text2text-generation',model=model, tokenizer=tokenizer)
styles = ["λ¬Έμ΄μ²΄", "ꡬμ΄μ²΄", "μλλ‘μ΄λ", "μμ¬", "μ±ν
", "μ΄λ±νμ", "μ΄λͺ¨ν°μ½", "enfp", "μ μ¬", "ν μλ²μ§", "ν λ¨Έλ", "μ€νμ", "μ", "λ루ν ", "μ λΉ", "μμ¬ν", "λ²μκΈ°"]
for style in styles:
text = f"{style} νμμΌλ‘ λ³ν:μ€λμ λλ³Άμνμ λ¨Ήμλ€. λ§μμλ€."
out = nlg_pipeline(text, max_length=100)
print(style, out[0]['generated_text'])
Model Source
https://github.com/KoJLabs/speech-style/tree/main
Speech style conversion package
You can exercise korean speech style conversion task with python package KoTAN
- Downloads last month
- 128
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.