|
--- |
|
license: apache-2.0 |
|
language: |
|
- ar |
|
pipeline_tag: text-classification |
|
library_name: transformers |
|
base_model: |
|
- Omartificial-Intelligence-Space/GATE-AraBert-v1 |
|
tags: |
|
- reranking |
|
- sentence-transformers |
|
--- |
|
|
|
# GATE-Reranker-V1 🚀✨ |
|
|
|
**NAMAA-space** releases **GATE-Reranker-V1**, a high-performance model fine-tuned to elevate Arabic document retrieval and ranking to new heights! 📚🇸🇦 |
|
|
|
This model is designed to **improve search relevance** of **arabic** documents by accurately ranking documents based on their contextual fit for a given query. |
|
|
|
## Key Features 🔑 |
|
|
|
- **Optimized for Arabic**: Built on the highly performant [Omartificial-Intelligence-Space/GATE-AraBert-v1](https://huggingface.co/Omartificial-Intelligence-Space/GATE-AraBert-v1) with exclusivly rich Arabic data. |
|
- **Advanced Document Ranking**: Ranks results with precision, perfect for search engines, recommendation systems, and question-answering applications. |
|
- **State-of-the-Art Performance**: Achieves excellent performance compared to famous rerankers(See [Evaluation](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1#evaluation)), ensuring reliable relevance and precision. |
|
|
|
## Example Use Cases 💼 |
|
|
|
- **Retrieval Augmented Generation**: Improve search result relevance for Arabic content. |
|
- **Content Recommendation**: Deliver top-tier Arabic content suggestions. |
|
- **Question Answering**: Boost answer retrieval quality in Arabic-focused systems. |
|
|
|
## Usage |
|
|
|
# Within sentence-transformers |
|
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: |
|
|
|
```python |
|
from sentence_transformers import CrossEncoder |
|
model = CrossEncoder('NAMAA-Space/GATE-Reranker-V1', max_length=512) |
|
|
|
Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟' |
|
Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض' |
|
Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين الإنتاجية في الصناعات' |
|
|
|
scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)]) |
|
``` |
|
|
|
## Evaluation |
|
|
|
We evaluate our model on two different datasets using the metrics **MAP**, **MRR** and **NDCG@10**: |
|
|
|
The purpose of this evaluation is to highlight the performance of our model with regards to: Relevant/Irrelevant labels and positive/multiple negatives documents: |
|
|
|
Dataset 1: [NAMAA-Space/Ar-Reranking-Eval](https://huggingface.co/datasets/NAMAA-Space/Ar-Reranking-Eval) |
|
|
|
![Plot](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1/resolve/main/Dataset1_Evaluation.jpg) |
|
|
|
Dataset 2: [NAMAA-Space/Arabic-Reranking-Triplet-5-Eval](https://huggingface.co/datasets/NAMAA-Space/Arabic-Reranking-Triplet-5-Eval) |
|
|
|
![Plot](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1/resolve/main/Dataset2_Evaluation.jpg) |
|
|
|
As seen, The model performs extremly well in comparison to other famous rerankers. |
|
|
|
WIP: More comparisons and evaluation on arabic datasets. |