GATE-Reranker-V1 / README.md
omarelshehy's picture
Update README.md
05d3718 verified
|
raw
history blame
2.81 kB
metadata
license: apache-2.0
language:
  - ar
pipeline_tag: text-classification
library_name: transformers
base_model:
  - Omartificial-Intelligence-Space/GATE-AraBert-v1
tags:
  - reranking
  - sentence-transformers

GATE-Reranker-V1 ๐Ÿš€โœจ

NAMAA-space releases GATE-Reranker-V1, a high-performance model fine-tuned to elevate Arabic document retrieval and ranking to new heights! ๐Ÿ“š๐Ÿ‡ธ๐Ÿ‡ฆ

This model is designed to improve search relevance of arabic documents by accurately ranking documents based on their contextual fit for a given query.

Key Features ๐Ÿ”‘

  • Optimized for Arabic: Built on the highly performant Omartificial-Intelligence-Space/GATE-AraBert-v1 with exclusivly rich Arabic data.
  • Advanced Document Ranking: Ranks results with precision, perfect for search engines, recommendation systems, and question-answering applications.
  • State-of-the-Art Performance: Achieves excellent performance compared to famous rerankers(See Evaluation), ensuring reliable relevance and precision.

Example Use Cases ๐Ÿ’ผ

  • Retrieval Augmented Generation: Improve search result relevance for Arabic content.
  • Content Recommendation: Deliver top-tier Arabic content suggestions.
  • Question Answering: Boost answer retrieval quality in Arabic-focused systems.

Usage

Within sentence-transformers

The usage becomes easier when you have SentenceTransformers installed. Then, you can use the pre-trained models like this:

from sentence_transformers import CrossEncoder
model = CrossEncoder('NAMAA-Space/GATE-Reranker-V1', max_length=512)

Query = 'ูƒูŠู ูŠู…ูƒู† ุงุณุชุฎุฏุงู… ุงู„ุชุนู„ู… ุงู„ุนู…ูŠู‚ ููŠ ู…ุนุงู„ุฌุฉ ุงู„ุตูˆุฑ ุงู„ุทุจูŠุฉุŸ'
Paragraph1 = 'ุงู„ุชุนู„ู… ุงู„ุนู…ูŠู‚ ูŠุณุงุนุฏ ููŠ ุชุญู„ูŠู„ ุงู„ุตูˆุฑ ุงู„ุทุจูŠุฉ ูˆุชุดุฎูŠุต ุงู„ุฃู…ุฑุงุถ'
Paragraph2 = 'ุงู„ุฐูƒุงุก ุงู„ุงุตุทู†ุงุนูŠ ูŠุณุชุฎุฏู… ููŠ ุชุญุณูŠู† ุงู„ุฅู†ุชุงุฌูŠุฉ ููŠ ุงู„ุตู†ุงุนุงุช'

scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)])

Evaluation

We evaluate our model on two different datasets using the metrics MAP, MRR and NDCG@10:

The purpose of this evaluation is to highlight the performance of our model with regards to: Relevant/Irrelevant labels and

1 - Dataset 1: NAMAA-Space/Arabic-Reranking-Triplet-5-Eval 2 - Dataset 2: NAMAA-Space/Ar-Reranking-Eval

and compare it to other famous models on the hub

Plot